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Abstract

String Stability of Interconnected Systems:
An Application to Platooning in Automated Highway Systems
by
D. V. A. H. G. Swaroop
Doctor of Philosophy in Mechanical Engineering
University of California at Berkeley
Professor J. Karl Hedrick. Chair

Automated Highway System (AHS) is primarily aimed at improving the
traffic flow capacity of the highways while ensuring safety. Central to successful de-
ployment, of AHS is the development of Automated Vehicle Control Systems (AVCS).
The longitudinal control aspect of AVCS deals with automatically controlling the
intervehicular spacing of close-vehicle formations called platoons. This dissertation
investigates various platooning strategies and their impact on the performance of the
platoon

String stability of a vehicle platoon is the primary performance parame-
ter. Intuitively. string stability of a vehicle platoon ensures that the intervehicular
spacing errors of all the vehicles are hounded uniformly in time provided the initial
spacing errors of all the vehicles are bounded. In this dissertation. we design various
decentralized control algorithms and characterize their performance in terms of the
minimum attenuation of the maximum spacing errors that can be guaranteed from
vehicle to vehicle in the platoon.

Parametric uncertainties degrade the platoon performance. In order to im-
prove the robustness of a string stable control algorithm. a direct adaptive cont'rol
algorithm that guarantees improved performance is designed.

The concept of string stability is extended to general nonlinear dynamical
systems. We derive sufficient conditions for ensuring stability for a countably infinite
interconnection of exponentially stable nonlinear systems. We also show that under

the same conditions, string stability is preserved for structural and singular perturba-



tions. Then. we present a decentralized adaptive controller to improve the robustness
in the presence of parametric uncertaint'ies for the same class of systems.

The contributions of this dissertation are twofold: From an application point
of view. this dissertation proposes “ practical” platooning strategies. From a theoret-
ical point of view. this study extends the concepts of stability to a countably infinite
interconnection of general nonlinear dynamical systems and introduces techniques for

analysis and design of decentralized control laws for them.

J. K. Hedrick. Thesis Committee Chair.
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Chapter 1

Introduction

This dissertation addresses the platoon control problem, i.e.. the problem of
designing decentralized controllers that maintain a desired intervehicular spacing in
a vehicle string in the presence of uncertainties and disturbances and in the light of
various available feedforward/feedback information. The main difficulty encountered
in designing such algorithms is to ensure that the spacing errors (deviation from the
desired intervehicular spacing) do not amplify from vehicle to vehicle along the pla-
toon. This problem is generalized to investigating the string stability of nonlinear
interconnected systems. Intuitively, string stability guarantees the uniform bounded-
ness of all the states of the interconnected system, if the initial states are all uniformly
hounded.

Three spacing policies - constant, separation (spacing). constant headway
time and constant safety factor - can be implemented for vehicle follower systems. In
constant separation policy. the intervehicular spacing is independent of the velocity
of the string of vehicles. In constant headway time policy. intervehicular spacing
increases linearly with an increase in the velocity of the controlled vehicle, the constant
of proportionality being the headway time. In constant safety policy, the desired
intervehicular spacing is a safety factor (greater than 1)times the stopping distance
of the following vehicle at that speed. In other words, the desired intervehicular
spacing varies quadratically with vehicle speed.

For the constant, spacing policy. Levine and Athans [22] used optimal con-



trol theory to propose control laws for regulating high speed vehicle strings. The
control force on each vehicle depended on the spacing errors of the entire string.
which required the position and velocity data of all the vehicles in the string. This
posed a burdensome data handling problem. especially when the string is long.

In order to overcome such problems, Wilkie [53] proposed a moving cell
scheme. in which a fictitious moving cell on the road acts as a reference to each
vehicle. The control effort is a function of the motion of the vehicle relative to the
moving cell. The disadvantage of this scheme is that information of the neighboring
vehicles and the string is ignored. Vehicles in this scheme communicate with the
wayside computers instead.

Decentralized controllers offer a compromise between the above two ex-
tremes. The information available dictates the structure of the decentralized con-
troller and the spacing policy that is to he adopted. Since vehicles interact through
their dynamics and the feedback control laws (which incorporate the information
structure and the desired spacing policy). it is necessary to evaluate the performance
of such decentralized controllers quantitatively.

One of the earliest schemes in decentralized cont'rollaws for constant spacing
policy was proposed by Levine. Athans and Levis [22], Caudill and Garrard [4], Pep-
pard [23] and Fenton [3]. Although the dynamics of ground vehicle is highly nonlinear
[2]. [23]. linear analysis is usually performed to determine qualitative/quantitative
effects of information structure and spacing policy on the string stability.

Caudill and Garrard. and Peppard have used inertial vehicle models to an-
alyze the string stability. Caudill and Garrard fed back the spacing and velocity
error measurements to their controller. Peppard added integral of the spacing error
information to the above controller. They obtained the transfer functions relating
the spacing error of every controlled vehicle relative to that of its predecessor. Since
reference (lead) vehicle information was lacking. they proved that the magnitude fre-
quency response of the transfer function has a peak greater than unity and thus.
concluded that)the constant spacing policy (without reference vehicle information) is
not string stable.

Shladover [38] introduced lead vehicle information in the control law and



demonstrated string stability. Sheikholeslam and Desoer [35] used a nominal third
order nonlinear vehicle model and used feedback linearization to obtain a triple inte-
grator model for the vehicle. He then fed back the acceleration and the velocity of
the lead vehicle to obtain string stability. Hedrick et al., [13] developed a nonlin-
ear vehicle model and used a sliding mode control algorithm that incorporates the
information of the lead vehicle and experimentally implemented the algorithm.

With respect to the other two spacing policies, Caudill and Garrard have
shown that the control algorithms . which use spacing and velocity error information:
are string stable. Chiu [6] has shown. by simulation: that constant headway time
policy requires a very high bandwidth actuators for a smaller headway time. Chien
and loannou [17] have proposed an autonomous time headway control strategy which
guarantees attenuation of spacing errors.

Prior to Chu’s work [19], interaction of vehicles and propagation of dis-
turbances along the string was investigated in a cursory sense. Analysis was mainly
restricted to special information structures and only disturbances from the ends of
the string were studied.

Chu considered infinite vehicles in the string (real and fictitious) that are
indesed by k. —2>c <k <oc. Every vehicle has a predetermined reference (see figure
1.1) and the position deviation of the k-th vehicle from its predetermined reference

is denoted by xx(¢). The dynamics of k-th vehicle is assumed to be

Reference

Actua

VA

Figure 1.1: Vehicles and their reference positions
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where @ > 0 represents the linearized drag force/unit mass and u(¢) is the control

force /unit mass.
He considers the following set of plausible inputs for the controller of the
k-th vehicle:

1. Position error of j-th vehicle. z;(¢);
2. Velocity error of j-th vehicle: &;(t);

3. Relative Position error between the j-th vehicle and the k-th vehicle. z;(#) —
z(t);

4. Relative Velocity error between the j-th vehicle and the k-th vehicle. &,(¢) —
k(1)

The total information data for the k-th vehicle is denoted by a vector y,(¢).
The components of y(t) are assumed to he any of (1)to (4)for various indices.

Mathematically, yx(t) can be expressed linearly as:
o T (-f)
win= £ | 20 1.2)
j=—o (1

where matrices h, (constants) equal zero for sufficiently large |i| or approach zero
exponentially as i/ — =oc. This condition implies that the interaction between any
two vehicles diminish as more and more vehicles come between them (if the controller

is designed properly). Identically structured linear feedback control of the form
’ltk<t) = Fyk(f) (1.3)

is applied to all the vehicles.



By the use of bilateral z-transformation. the dynamics of every vehicle in

the string is aggregated into a lumped form. Using the z-transformation technique.

the dependence on the vehicle index is eliminated,

X(zt) = AX(z.t)+ BU(z.1) (1.4)
Y(z.t) = H(2)X(z.1) (1.5)
U(z,t) = FY(z.1) (1.6)

(0
where , for any pi(t), P(z.t) == Y52 _ pe(t)z7F and X(2,0) =2 [ H0) } ==k

is the initial condition for the above system.

The closed loop dynamics of the string is given by:

X(z.t)=D(z. F)X(z.1) (1.7)
where D(z. F) = (()) ! ] + { 2 ] FH(). After integrating the above differential
equation, -

X(z.t) =eap(D(z, F)t)X(z.0) (1.8)

The resultant time-space relation of each vehicle can be obtained through inverse

z-transformation:

> }{e;rp(D(z,F)z‘)zk_jdz ‘ (1.9)

Chu defined string stability as follows:

Definition: A string of vehicles is stable with a feedback control structure if x4 (0). .74 (0)
are bounded for all k, implies that, for all k. z4(#) is bounded and zk(t) = 0ast — X.

The following theorem is then used to characterize string stability:

Theorem (Chu) : A string of vehicles described by 1.4 is stable if and only if all
the eigenvalues of D(z, F)have negative real parts for all |z| = 1.
In order to optimally choose F'. the following performance index is then

chosen.

1 > & , ' o
J = ;/0 > qlager — 2)? + plarer — 3)? + updt (1.10)
= k=—xc



where ¢,p > 0. The first two terms penalize relative spacing and velocity error
respectively between the k-th and k-1 st vehicles. The last term penalizes the control
effort to make the ride comfort as good as possible. Using bilateral z-transform. this

performance index can he converted to
X(H)Q()X (2. ) + U1 1)U (2, t)dt (1.11)

with Q(z) = Q(=71) and is given by Q(z) =2 —z — z~1. Using equations 1.4. the
performance index is minimized via Lyapunov like equations in D(:.F). For more
details, see [19].

This dissertation consists of six chapters. In chapter 2. we introduce the
notion of "string stability" for a platoon. Our definition of string stabilit'y considers
relative spacing errors (2x_1(t) — 2x(t)) and relative velocity errors (Zx_1(t) — 24(t))
instead of zx(t) and @4 (¢). We design various platooning strategies and analyze them
for string stability. Our analysis of string stability differs from Chu's analysis in two

respects:

1. Weinclude the acceleration information (feedforward information)in our cont'rol

laws.

2. First' the dependence on time is eliminated by the use of input-output norm
relationships. Then, string stability reduces to examining a differenceinequality.
In Chu's approach. the dependence on vehicle index is eliminated by the use of
a bilateral z-transform. Stability of the string is then examined by studying the

stability of a differential equation.

It is found that: for the constant intervehicular spacing strategy. only "weak"
string stability can be guaranteed if all the vehicles in the platoon do not have a
reference vehicle information. Intuitively. weak string stability requires that the intial
spacing and velocity errors be absolutely summable, if the spacing and velocity errors
of all the vehicles in the platoon have to be bounded at all times. Furthermore:
weak string stability is not robust to singular perturbations such as parasitic actuator
dynamics and signal processing lags. For constant headway time strategy, weak string

stability can only be guaranteed when dl the vehicles in the platoon do not avail of a



reference vehicle information. In this case, string stability robustness decreases with
decreasing headway time.

In chapter 3. we investigate the effects of uncertainty on a constant inter-
vehicular spacing algorithm. We present a gradient parameter adaptation law to
guarantee that the estimated parameters and the spacing errors of all the vehicles
are uniformly bounded in time: if the initial parameter estimation errors and spacing
errors of all vehicles are uniformly bounded.

In chapter 4, the platoon problem is generalized to investigating the string
stability of a countably infinite interconnection of identical nonlinear exponentially
stable systems. 11-e derive sufficient conditions that guarantee string stability of the
interconnected system. Under the same sufficient conditions, we prove that string
stability is robust to small singular perturbations. The above results help in de-
signing/decoupling the interconnections for countably infinite feedback linearizable

nonlinear systems, while ensuring string stability.

Contributions of the thesis and relations to previous work:
The contributions of this dissertation to the area of longitudinal control of

vehicle platoons are as follows:

1. We precisely define the “string stability” requirement for satisfactory function-
ing of the platoon in time domain. Without explicitly defining string stability.
Caudill and Garrard. Peppard, Shladover. Sheikholeslam prescribe frequency
domain conditions for string stability (i.e. the infinity norm of the transfer
function that relates the spacing error of the i-th vehicle to that of the i-1st
vehicle he less than unity). However. this is a necessary but not a sufficient

condition for string stability.

2. We show that, if the initial spacing errors are zero. the maximum spacing error
decreases geometrically in vehicle index in the platoon (vehicle ID) for anp lead
vehicle maneuver with the availability of lead vehicle relative position informa-
tion to every controlled vehicle. The question arises as to how every controlled

vehicle obtains lead vehicle relative position information. Spacing error of every



controlled vehicle relative to the lead vehicle is the spacing error of its preced-
ing vehicle relative to the lead vehicle plus the spacing error of the controlled
vehicle relative to its predecessor. Since relative position error information of
the controlled vehicle relative to its predecessors is obtained by onboard sensors
such as radar and sonar. it is sufficient that every controlled vehicle broadcast
its error information relative to the lead vehicle to its successor. Broadcasting
such information as relative position information, lead vehicle acceleration and

velocity is possible with the current state of radio communications technology.

We also examine the effect of availability of “r” vehicle look ahead information.
knowledge of vehicle ID on the string stability of the platoon for both constant
intervehicular spacing and constant headway time strategies. Without reference
vehicle information. string stability of a platoon for constant spacing strategies
is not robust to singular perturbations like parasitic actuator dynamics and
robustness in string stability to singular perturbations decreases with decreasing
headway time for constant headway strategies as documented in Chiu, Stupp
and Brown [6]. Knowledge of controlled vehicle's ID helps build the error
information of all the preceding vehicles in the platoon and realizability of such
a control scheme depends on the availability of preceding vehicle acceleration
information. This is the basis for a semi-autonomous cruise control strategy.

Previous work in this area have not addressed these issues.

3. We develop a direct, adaptive longitudinal control law that increases the robust-
ness of the platoon in the presence of uncertainty in the parameters such as
aerodynamic drag. mass of the vehicle and simulations demonstrate its effec-
tiveness. Sheikholeslam, [36], proposed an indirect adaptive controller. The

advantage of a direct scheme is its ease in implementation.

In addition, we propose hybrid platooning strategies (mixed constant spacing
and constant headway time strategies). We also propose a two-time scale information
update to facilitate implementation - on board sensors update their information on a

faster time scale and lead vehicle information is updated on a slower time scale.



The contributions of this dissertation to the area of cont'rol of interconnected

dynamical systems are as follows:

1. Research in this area is heavily concentrated on the stability of finite inter-
connection of systems. See references [26]. [20], [3]. [36], [31]. [41], [@]. In
this dissertation. we introduce the notion of string stabilit'y for a countably in-
finite interconnection of identical systems. A version of string stability called
~-stability was introduced by Chang [5], in reference to infinite circuit networks.
In the context of vehicle following applications, Chu [19] defined string stability
as seen earlier. String stability is a generalization of Lyapunov stability for the
above class of interconnected systems. We derive sufficient conditions to deter-
mine if a closed loop interconnected system is string stable. This provides some
guideline for designing controllers for interconnected systems that guarantee

string stability.

2. We investigate the robustness of string stable interconnected systems. Like
exponentially stable nonlinear systems, the class of interconnected systems con-

sidered are shown to be robust to structural and singular perturbations.

3. We present a gradient-based parameter adaptation law for a class of intercon-

nected systems.
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Chapter 2

Vehicle Model

{

In this chapter: a vehicle model based on Cho and Hedrick, [7], is developed
and validated. Control algorithms that explicitly address the issue of string stability
for constant spacing and headway control strategies will be developed in the later
chapters, based on this model. A three state variable lumped parameter longitudinal
model of a vehicle based on the following assumptions is developed for simulating the

response of the vehicles in the platoon:

1. Ideal gas law holds in the intake manifold.
2. Temperature of the intake manifold is a constant'.
3. The drive axle is rigid.
4. The torque converter is locked.
5. The brakes obey first order dynamics.
X simple model for the intake manifold dynamics is given by:

Mg = Mgi — Mao (2.1)

Pm"r - 777aRng (22)

where m, is the mass of air in the intake manifold and rn,; and m,, are the mass flow

rates through the throttle valve and into the cylinders, respectively. A schematic of
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the engine is shown in Figure 2.1 . P,,.V and 7, are the intake manifold pressure,
volume and temperature respectively. R, is the gas constant for air. Assumptions 1
and 2 enable us to obtain an algebraic relationship between the manifold pressure. P,
(which is sensed) and the mass of air in the manifold: m,. The empirical relationship
used for rig:, ['l],is :

=) 23)

where M .AX is a constant dependent on the size of the throttle body. TC(a) is

e = MAX .TC. PRI(

the throttle characteristic which is the projected area the flow sees as a function of
the throttle angle, a. PRI is the pressure influence function which describes the
choked flow relationship which often occurs through the throttle valve. P, is the
atmospheric pressure. r,, is the mass air flow rate into the combustion chamber and
is a nonlinear function of the intake manifold pressure P,, and the engine speed w..
For vehicle position control applications. the intake manifold dynamics is much faster

than the engine speed dynamics, so that we can assume

P 2.4
P) (2.4)

a

Fao(We, Ma) = The; = MAX - TC - PRI(

-/

/// INTAKE MANIFOLD

THROTTLE
FUEL
INJECTOR ﬂ

OXYGEN
SENSOR

EXHAUST
MANIFOLD

Jlf*

Figure 2.1: Schematic of an Engine

A free body diagram of the vehicle is shown in Figure 2.2 . Assumptions
3 and 4 ensure that the wheel speed is proportional to the engine speed: w.. The
rotational dynamics of the engine is described by:
Toet — R(WFy + Ty, + hEFy)

We = Ie (25)
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where T,.; is the net combustion torque (indicated torque - friction torque). It is also
a nonlinear function of w. and P,,. g, and T, are provided as tabular functions
by the engine manufacturers. R is the gear ratio, h is the tire radius and I. is the
effective rotational inertia of the engine when the inertia of the wheel is also referred
to the engine side. Ty, is the brake torque at the wheels and F, is the tractive force.

The tractive force F;, is given by [34]:

?

—) (2.6)

l max

where K, is the longitudinal tire stiffness. The saturation function, sat(x) is defined

F,, = K, sat(

as follows:

0 zE[-1.1]
sat(z) =¢ =1 < -1

1 z2>21

The slip, ¢, between the tire and the ground is defined as:
.
- 2.7
Rhw, (2.7)
where v is the longitudinal velocity of the vehicle. The dynamics of the brake is given
by:

=1

. Toe — Tty

T, = 2=t (2.8)
b

where T;. is the commanded brake torque and 7, is the time constant for the brake

actuator. A detailed dynamic model for brake can be found in [8]. Finally. the

equation for longitudinal vehicle velocity is given by:
b Fr et (2.9)

M
where ¢, is the drag coefficient, Fy models the energy loss (rolling resistance) and A/
is the effective mass of the vehicle.

The model developed above is used for simulation. We apply the same
throttle input to the actual vehicle and the simulation mode. The maneuvers that
have been chosen to validate the simulation model do not require braking. Hence, the
simulation model is only partially valid. The simulated and experimental responses
for the constant speed and variable speed trajectory tests are shown in Figure 2.3 .

The two responses agree quite well.
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2.1 Simplified model for control

The design of the controller is made simpler by a “NO SLIP" assumption.
i.e v = Rhw.. With this assumption. equations 2.5 and 2.9 reduce to
Tret — coRPWP*w? — R(hF; + Ty,)
Je
J. is the effective rotational inertia of the engine when the vehicle mass and the wheel

(2.10)

l.U(:' =

inertias are referred to the engine side. Equations 2.4, 2.8. 2.10 describe the model
for the controller

Algorithms for spacing and headway control strategies have the same feed-
back structure except for the information that is fed back. The feedback structure is
developed using the 1/0 linearization technique. [16]. 1/0 linearization is best suited
for this problem considering the nonlinearities in the engine model. It is assumed that
every controlled vehicle has access to its state variables such as velocity. brake torque.
acceleration. and that the parameters such as aerodynamic drag, rolling resistance
friction: effective engine inertia. gear ratios and tire radii are known exactly. The

desired output, “y", is the longitudinal position of the j-th following vehicle, z;.

y = (2.112)
y=1;=v; = Rhuw, (2.12)
. Rh 3.3 2
j=1,= (T[Tnet — ¢ R°hw. — R(hFy + Tyr)]); (2.13)
Choose

3132 Je
(Tnet)j = [CaR h lL‘E + R(th + Tbr)] + Eh_u'jsl (214)

where (7)., ), is the desired net engine torque and u;y is chosen to make the closed
loop system satisfy certain performance objectives. Knowing the desired net engine
torque and the actual speed. the desired manifold pressure. P4 can be found from
the table-look up map. Using equation 2.4. the desired throttle angle. «,; can be
calculated as follows:

r}lao<u'5- Prnd)
MAX PRI(Z2)

ag=TC™Y ] (2.15)
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We can simplify computations by combining T,.e:(w.. Py,) and equation 2.4 to yield
Tret(we, o). If @ < a,. the minimum allowable throttle angle, then braking should

occur. in which case. the desired brake torque 7}4 is given by:

Je coR¥h3w? + RhF;
Trva = T st 5 (2.16)
In order to close the loop for the brake dynamics, we define another synthetic output
yp so that
Yo = Tor — Tha (2.17)
. : Tio — Tor
iy =Ty — Ty = == — Ty, (2.18)

b

Choose T}, such that
Too = Tor + 70(Toa — No(Tor — Toa)) (2.19)

To simplify implementation. Tpq is obtained by numerically differentiating the desired
brake torque signal. )\, is chosen sufficiently high so that the use of throttle and brake

control approximates the vehicle (plant) model as
;= U (2.20)

The choice of ujy reflects the platooning strategy that is considered. Every platooning
strategy is analyzed for robustness to parasitic actuator lags (like the brake dynamics).

In contrast to the control model developed here: Sheikholeslam [33] uses a
nominal third order nonlinear model and uses exact linearization to obtain a triple

integrator model for a vehicle.
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Figure 2.2: Forces acting on a moving vehicle

13



Velocity {mfs)

Velocity (m/s)

35

20

15

Model Validation Constant speed trajcctory

16

Simulation =
N

R Do A
TrrevEXpériment _

20 40 S0 80 100 120 140 160 180 200
Time(scc)
Modcl Validation __ Variable speed trajectory
‘ ‘ ' ; Expcrifncnt

Simulation

20

Figure

40 60 80 100

Time(sec)

2.3: Simulation Model Validation

120



Chapter 3

Platooning Strategies

3.1 Introduction

Platoon control strategies directly affect traffic flow capacities. Analysis of
different platooning control strategies serves two purposes: 1) Based on the informa-
tion available. the most effective platooning strategy can be chosen. 2) In case of
sensor failure, it provides a back-up control strategy. The effectiveness of a platoon
control strategy can be gauged by the maximum traffic flow capacity. the attenuation
of spacing errors. that it can guarantee and the amount of information that is needed

to implement the strategy in real-time.

In this chapter. we consider the following platooning strategies

1. Constant Spacing control strategies : In these strategies, the desired intervehicu-
lar spacing is independent of the velocity of the controlled vehicle. The tracking
requirement is stringent. since every controlled vehicle has to match its posi-
tion, velocity and acceleration with the vehicle ahead. As a consequence, these
strategies require more information to guarantee performance. The achievable
traffic capacity is very high in a constant spacing control strategy. We consider

the following constant spacing strategies:
Control with information of reference vehicle information only.

Autonomous and serni-autonomous control.
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Semi-Autonomous control with vehicle indes information.
Control with information of preceding and reference vehicles

Control with information of “r” immediately preceding vehicles

Mini-platoon control.

Mini-platoon control with lead vehicle information.

2. Variable Spacing control strategies : The desired intervehicular spacing varies
with the velocity of the controllecl vehicle in these platooning strategies. The
tracking requirement, is not as stringent as the previous case. Some of the
variable spacing control strategies can. therefore. be implemented with onboard
sensors. However. the achievable traffic capacity is limited. We consider the

following variable spacing strategies in this dissertation:
Autonomous Intelligent Cruise Control (XICC).

Control with information of “r” immediately preceding vehicles.

3. Hybrid strategies : Constant spacing and variable spacing strategies can be
combined to develop strategies that, are compatible with the given information

and to guarantee robustness. These strategies. however. are not analyzed in
this dissertation.

We also determine their performance limits in terms of string stability. The method
of analysis involves the use of linear input-output norm relationships to convert the
problem of the stability of a string of moving vehicles into the stability of linear
difference equation with constant coefficients. Sufficient conditions to ensure string

stability are derived. The limitations/effectiveness of these schemes is clemonstrated

by simulation results.
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3.2 String Stability

The following figure illustrates the definitions of spacing errors in the pla-

toon:

X v Q0 X v ,0 X WV ,Q X ,v 4
[ I | 1 1 1 [l I ol B i i |

- r
oo £atod ratey ity

Figure 3.1: Spacing errors in a platoon

The spacing error in the i-th vehicle, ¢; is given by €; = x;—2,_;+L;, where L,

is the desired intervehicular spacing. The following are the platooning specifications:

1. Individual vehicle stability: The ability of any vehicle in the platoon to
track any bounded acceleration and velocity profile of its predecessor with a

bounded spacing and velocity error.

2. String Stability: It is required to ensure that the spacing errors do not amplify

upstream from vehicle to vehicle in a platoon.

3. Zero Steady state spacing error: Irrespective of the lead vehicle maneuvers.
it is required that, every controlled vehicle maintain the desired spacing in the
steady state. This is desirable to maintain a reliable traffic capacity and for

safety.

Before defining string stability precisely, we need the following notations: We use
[fil-) o ot simply |[fill to mean supisolfi(#)]. and [|fi(0)]| or simply [|£(0)]}<
i)l or [[filly means [ |fi(7){d7. and [|£;(0)|;

to mean sup;|f;(0)]. Similarly



denotes Y.3° | fi(0)].

Definition 1: A platoon is string stable if. given v > 0. 36 > O such that whenever
max [llez(U)HxHGL(O)HxHZ% Hoc HZEJ Hoc <5:>bup Hein‘<‘;
1

Definition 2: A platoon is string stable in the weak sense if, given * >0, 30 >0

such that whenever
max [|[;(0)]]1, [|&(0)]:] < & = sup {lei]lx <1

Definition 3: A platoon has uniformly bounded spacing errors if given 0 > 0.3y >0
such that

max [Hfi(O)Hx-,HE Mee. HZEJ HOO’HZEJ Mlso] <5:>5up eills <7

There is an underlying difference equation which relates the maximum spacing error
of the i-th vehicle with the maximum spacing errors of the vehicles preceding it. If
this difference equation has all its roots inside the unit circle, then the platoon is
string stable. If the difference equation has a simple root on the unit circle. then the
platoon is weak sense string stable. It is clear that, every platoon of finite number of
stable vehicles is string stable. Although. in practice, no platoon has infinite vehicles
init. it is necessary that platooning specifications be satisfied independent of the size
of the platoon to prevent actuator saturation.

A vehicle model for control based on [7], [23] and in the previous chapter
is given by:

U, — ¢t — fi
L _ui— il = f 3.1
e M, (3.1)

where wu, is the effective control torque (net engine/brake torque). ¢; is the effective
aerodynamic drag coefficient. f; is the effective tire drag, and 1, is the effective mass

of the i-th controlled vehicle. The control effort u; is chosen to be
wp = cd} 4+ fi + Miug (3.2)
so that

Ty = Ujg (3.3)
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where the syntheticinput u;« is based on the information that is available for feedback
and is chosen to satisfy the performance objectives. The spacing error dynamics of

vehicles in a platoon depends on the choice of u;s. The following preliminaries are

used to analyze the string stability of a platoon.

3.2.1 Preliminaries :

Fact 1 : If H(s) is a stable, proper transfer function, with H(0)| = a, and if
h(t) = LY(H(s)) is its impulse response, then ||2||; = o <= h(t) does not change

sign.

Proof : |H(0)| = |[Xh(t)dt] < [°|h(t)|dt and from Calculus, [5°|A(t)|dt =
| [5° h(t)dt| <= h(t) does not change sign.

Fact 2 : If ~(¢) > 0. then dl the Input/Output induced norms are equal.

Proof : Let 5, he the p-th induced norm from input to output. From Linear System
Theory, [9].
[H(0)] < [|H(jw)lloe <3 < [IRIN

I£ h(t) > 0. then |H(0)] = [|lh = 7, = [[Al].

Fact 3 : Define P.(z) =" — 21 «;z"77; where a; >0. j =1,2....r. Then all the
roots of P.(z) lie inside the unit disc if 3] a; < 1.

Proof : This is proved by contradiction. Suppose there exists a zo such that P,.(z) =

0 and |z9| > 1. Then
r . T ) T

1=3 ajz’ <Y ajll™ <D e <1
1 1 1

which 1s a contradiction.

Fact 4 : If 37, = 1,then dl the roots of P.(z) lie inside the closed unit disc and
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all the roots that lie on the unit disc are simple.

Proof : This fact is also proved by contradiction. If P.(z) =0 and |z| > 1.then

r r
l=0;z7 <3 ajfz[7 <> a;=1
1 1

This is a contradiction. This establises that all the roots of P,(z) lie inside the closed
unit disk.

Let |z9] =1 such that P,(zy) = 0.

Claim : P.(zy) # 0.

Proof of the Claim : Otherwise.

Plz)=rz"t—aq(r—1)z" = ... —a,_1 =0

21=F ot s Dalal S < S a <
1

and this is also a contradiction. Since P.(zo) # 0, the roots that' lie on the unit circle

are simple.

Fact 5 : If &,(¢) is the impulse response of H;(s) and «; := ||hj]l, Tia; =
Y7 |H,;(0)] <= h;(t)does not change sign.

Proof : a; > \ffj(o)l and from Fact 1,a, = \Hj(O)L <= h;(t) does not change

s1g1.
Fact 6 : If Y} H;(s) = 1.then
o Yl >1
¢ Yia,=1 < H(s)=q,, aconstant,

Proof : (1) follows from a fact from Linear System Theory. [9], that |||, >

()|
From Fact 5. each k;(t) should not change sign. But 3] 2,(t) = é(t) = Every k(1)

is a scaled impulse. Therefore, H;(s) = «;, a constant.

Usually the spacing error dynamics of any vehicle is a function of the spacing

error dynamics of “r” vehicles ahead of it. where “t” is a constant. In the platooning
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strategies discussed in this dissertation, the associated spacing error dynamics is a
special case of the general case presented here. The spacing error dynamics of vehicles

in a platoon usually satisfy the following set of differential equations:

1+ qier + e =0 (3.4)

éi + q1éi + §26; = Z kajél—j + kvjéi—j + kpjez‘—j (35)

=1

with €—; = 0V ¢ S j

Define

. kajs® + kyjs + ky, S1y 7
Hj(s) := ’32+q1;+q2 = aj = ||L7HH ()l = [[h]]:

A(s) = 52 +q18 +(12§ w,(t) = Zej(t) =(z;(t) — z(t) +ZL]~):

where £71(F(s)) denotes the inverse Laplace Transform of F(s) and is given by f(t).

h;(t) is the impulse response of H;(s) and ||A;(+)||1 is given by [5°|h;(7)|dT.

Define P.(z) = " — ¥} a;2"79, Platoon performance can be described by

the spectral radius associated with this characteristic polynomial. P,.(z). i.e
p =max{|z| : P.(z) =0} (3.6)

Usually. if all the vehicles in the platoon do not have the same (reference) vehicle
information. the transfer functions, I:Ij(s), are such that 3°%_, H;(s) = 1for a constant
spacing strategy and Y H,;(0) = 1for a variable spacing strategy. These constraints
pose performance limitations. since " a; > 3" H;(0) =1 and hence. p > 1. If hi(t)
does not change sign. then a; = H;(0) and p = 1. The design problem for such
strategies reduces to choosing the control gains such that, the corresponding impulse
response of the transfer functions H,(s),j = 1.....r, does not change sign. If, p >1

for a strategy that has to be used, the following safety precautions can be observed:

1. Choose the intervehicular spacing, L; = p'~'L;.
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2. Limit the number of vehicles in a platoon.

The above precautions limit the traffic capacity. Input (throttle) saturation can occur.
since no effort has been macle to guarantee the attenuation of spacing errors.
In the proposition that follows, we give sufficient conditions on the the gains.

«;, of the transfer functions. H;(s).

Proposition : Small Transfer Function Gain Theorem for String Stability

of the Platoon

1. If Y7 «; <1, the platoon is string stable. and sup, ||w;||~ is bounded.
2. If 7 o; =1, the platoon is string stable in the weak sense.

3. If YT a; <1, then given v > 0,36 > 0, such that
max [||€(0)]lo- [&(0)]|se. [[10i(0)[lc. [[0:(0)]|x] < 6 = max{sup; [|&[xc,sup; [|illx} <

~. 1.e the relative velocity errors are bounded in vehicle index and time.

4. €;(t) — 0 asymptotically for al vehicles in the platoon.

Proof:
1. Let v > 0 be given. From equation 3.5, it follows that

) = Hifs)s + (s + q)ei(0) + €(0) — X7 (Kays + kyj)eij(0) + kajéizj(0)
1=1 Lk(8>

There exists ¢;.d; > 0. j =0,1.2.....7 such that

eille <Y ajlleizslia + X csleims (0)] + djléi;(0)]
3=1 =0

From Fact 3, P.(z), has dl its roots inside the unit circle. Therefore. 3M > 0.0 <
X <1, such that

r

leilloe < N Jerllo + 322N culles(0)] o + i 4(0) )

=1 k=0
which implies that

il € Miler e + =2 3 aulleO)] o + i)l

k=0
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From equation 3.4, ||e1]lse < ¢}]e1(0)] 4 ¢, |é1(0)] for some ¢;, ¢, > 0. Let

T (1= (1-A)
2¢, " 2¢y 2Mey (1 — X) +2M Shc; 2Mey (1 — A) +2M S0 d;

§=min |

]

Clearly, sup; ||&llx < 7.
w, satisfies equations 3.4 and 3.5. Hence, by the same argument as above.

max (|| 3 &(0) . uzej el < 6= 1S el <3

2. If ¥ ¢; = 1.from Fact 4. P,(z) = 0 has simple roots on the unit circle and all

other roots are within the unit circle. Therefore.
leilloo < HelethJHe M+ dsl[&O)lh < (e +c2+ZcJ + dj) max [[|e(0) . ||€:(0)][1]
Hence: the platoon is string stable in the weak sense. Similarly, it can he shown that

lewillos < (€] +¢5 + i ¢; + dy) max [|[wi(0)[l1, |[i(0)[ 1]

=0

3. Let p; = ¢, and p; satisfies equations 3.4 and 3.5. Hence! by part (a).the result
follows.

4. From equation 3.5 and the final value theorem,
r
€iss = _ H(0)€(—j)ss
J=1

where ¢;,, is the steady state spacing error in the i-th vehicle. Since. 3°"_, H;(0)] <
> i-1@; < 1. there exists some M; > 0 such that l€iss] < Milerss]. Since €155 = 0. it
follows that ¢, =0.

Sheikholeslam [35] uses a triple integrator control model for a vehicle and

considers two cases:

e Autonomous case : In this case. the only external information fed back in the

control law is from the on-board radar (spacing and velocity error).

e Control with information of lead vehicle : Lead vehicle velocity and accleration

infornmtion is fed back in addition to the on-board radar information
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In both the cases. the spacing error dynamics of the i-th vehicle is dependent, on the

spacing error dynamics of its preceding vehicle. 1.e.,

In contrast to the conditions for string stability given here. Sheikholeslam requires

the following conditions for string stability :
0 H'(s),é’(s) should be proper stable transfer functions.
o G(0) =0 for zero steady state spacing errors.
o ||H(jw)||x < 1for attenuating spacing errors along the platoon.

o It is desirable that the impulse response, h(t). of I:I(s) be positive so that, the

spacing errors do not exhibit oscillatory behavior.

Since me are more concerned with the amplification of maximum spacing
error from vehicle to vehicle along the platoon. it is logical to use the X — oo induced

norm, ||2]|;. of the spacing error propagation transfer function. I:[(s) instead of 2 — 2

induced norm: ||I:I(ju')Hx. In fact. by use of Fact 1, the last two conditions proposed

by Sheikholeslam try to make ||k[}; as close to ||H(jw)||x as possible and they are
equal when /() > 0. In this dissertation. we impose conditions on ||4||; which

automatically includes the last two conditions proposed by Sheikholeslam.
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3.3 Constant spacing control strategies

3.3.1 Control with information of reference vehicle infor-

mation only

It is insightful to look into the advantages of having reference vehicle infor-

mation.
Control Law :

Consider the following control law
2
Uyl = :fl — Cl,(i’z' — ;’i’z) — Cp<1’z' — X +Z LJ')
1
Henceforth, x; refers to the position of the lead vehicle in the platoon

Spacing Error Dynamics :
The spacing error dynamics for all strategies is obtained using the following

equation :

€ = I — Ti—1 = Ujg — U(j-1)sl

From the above two equations, we obtain
E: +cvéz~ +Cpel- =0

Comparison of the spacing error dynamics with equation 3.5 yields >} a; =0 and
the corresponding stability polynomial associated with this strategy is = = 0. This
is the “best™ achievable platoon performance. It is unsafe since it does not take the

information of the preceding vehicle into consideration.

3.3.2 Autonomous control

In this strategy. control law is based only on the on-hoard sensor measure-

ments.

Control Law :

Ujsl = —]‘k'éz - kpez'
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Spacing Error Dynamics :
éi = U;g] — U(i—l)sl Y i1>2

= 62 + /Z‘:uei + kpei = ktéi—l + 'Z‘Tpei—l

where
R kys+ k
fls) = oS5 T R

( ) s2 4+ IC,US + kp

X k2 + k2e?
- _ P v

= |H(jw)] (ky — w?)? + k2u?
For: = 1.

éi + kuéi + A“pﬁz = —;.Z.’]

For dl k, > 0.k, > 0. |f[(jw)| > 1for sufficiently small frequencies. A sinusoidal
lead vehicle acceleration profile at that frequency results in errors amplifying along
the platoon. Consequently. p > 1 and the stability polynomial associated with this

strategy-, = = p. is unstable.

3.3.3 Semi-Autonomous control

In this control strategy. preceding vehicle’s acceleration information is as-
sumed to be available or estimated accurately.

Control Law :
Uil = kai‘i—l - kvéi - kpel-
Spacing Error Dynamics :

éi + kvei + Aipﬁi = kagi—l + ktéi—l + kpez'—l Y o1 Z 2



where

. Fos® + kys+ k&

H(s) = a v D
(s) st 4 kps +ky

For: =1,

et e e = (ke - 1)3

If i, >1, |ﬁ(ju-)\ > 1 for w sufficiently high. Hence, any lead vehicle acceleration at
such a high frequency results in errors getting amplified along the platoon. If &, < 1.
then for all k. > 0.k, > 0. |[H(jw)| > 1for sufficiently small frequencies. Therefore.
for string stability. £, = 1and H{(s) = 1. Potentially, weak string stability can be

guaranteed.

Robustness to Signal Processing/ Actuator Lags : As a result of signal pro-

cessing/actuator lags, the control effort. u;y. is the output of a filter

TUjsl + Uist = kali—1 — ko€ — kpei

2 kg stk .
T-S;+52+i‘vs+kp and |H,(jw)| >1forall 7 >0

and for sufficiently small frequencies. Referring to equation 3.6. p > 1 and the

The perturbed transfer function H,(s) =

stability polvnomial associated with this strategy, z = p, is unstable and therefore,

this scheme cannot be used for platooning.

3.3.4 Control with information of lead and preceding vehi-

cles

With lead vehicle acceleration. velocity and position information, [13], de-

fine S; as
Si=¢é&+qe + qs(vi —v) + qa; — 2 + Z L;)
=

S; incorporates the information of the lead and preceding vehicles. It is chosen in
such a way that the spacing error dynamics on the surface S, = S;_; = 0 is string

stable.
Spacing Error Dynamics :

Si—Sici=1+@e+ (g +q)e — €21 — g€
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Laplace transforming the above equation,

s+aq (Si = Sic1) + (14 ¢3)ei(0) — €i-1(0))

éi S} = éz’— s)+

SRS TE PEA RS (1 4s)5+ (0 1 43

In this case. H(s) = m R(t) = L7YH(s)) > 0if ¢1g3 > ¢4. Since
||hlli = |H(0)| whenever i (t)does not change sign. a; = —%— < 1. and therefore.

41 +44
this platooning strategy is string stable. ¢,g3 > ¢4 indicates that sufficient damping

(¢s) is required to make a; = —4-
= |le]]o < gL lleia]| .|.||5::—51'_1Hoc+(2 +¢3)|]e(0)] e
Tt ot

if g1g3 > q4. Clearly. if all the sliding surfaces. S; and the spacing errors are uniformly
bounded at the initial time and the sliding surfaces are chosen such that SiS‘,; < 0. then
the sliding surfaces, the spacing and velocity errors of all the vehicles are uniformly
bounded at all time. Therefore, we choose the control, u;,;. to make s; +,\52‘ =0 and

is given by :
Control Law :

Lo . : l
Ujsl = m[l’i—l + g3 — (g1 + A)é — qre — (gs + Aga)(vi — vi) — Aga(z; — 21 + Z L)l
3 1=1

The condition that Y%_;€;(0),¥%_,¢;(0) be bounded is required to show
that the control effort and the sliding surface is bounded at all times. Boundedness
of €,(t).¢,(t) alone does not guarantee the boundedness of sliding surface and the
control effort. In order to prove boundedness of the sliding surface and the control
effort: we need to show that i, := (v;(t) — w(t)) and w, := (zi(t) — (t) TS L;) is

bounded for all vehicles at all time. Using the definition of sliding surface 5;.
Si— 51 =1+ @)w; + (g1 + ga)w; — ic1 — i

By the same argument as above, it follows that w;, w; is hounded at all time for all

vehicles.
Robustness to Actuator/Signal processing lags

With actuator/signal processing lags. the actual input (throttle/brake) input

to the system is a first order filtered output. us. of u;. Hence,

. up— it — f;

i Vi
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where

T lLf +uy = o + ]LL Mg

d. . 2¢;z;
— 7—1; + #,(1 +

it A
Since 2%;1 ~ B &~ 0.0175 << 1, we neglect that term to get the following
equations:
. Q1+ Ga . Mar + q4) d
p Motg) _ @
€ + (A + 1+q3)€1 1+ ¢ €1 dz‘ll
and for : > 2.
d. . g1+ qa .. Mg + g4) 1 . )
T €& ! A i T = i— A ) - A -
dt6+€+( +1+q3)6+ Lo - l+q3[€ 1+ (@ + A)éior + qrhein]

Proposition : Robustness to Actuator/ Signal Processing lag

Ifq > ‘“*q‘* . then 37, > 0 such that vV 7 < 7, the platoon has uniformly bounded

spacing errors for all bounded acceleration manuevers of the lead vehicle.

Proof It is easy to see that

g1+ G4

Algr + d .
r—e€1 + € A + - (QI Q4) —

)él + — . €1 = — T4

It suffices to prove that the gain of the perturbed transfer function, ﬁp(s), is less than

unity: where H,(s) is given by:

Bofs) = — (s +q)(s + A)
P 1tgs(rs® + 82+ (A + 458)s + fi:;m)

Let 5, = nnn{‘“*‘“ X} and 3, = max{%F2% X}. Figure 3.2 illustrates how the poles

of the perturbed transfer function change with 7. Let 3; < 3, < 3, be the poles of the
perturbed transfer function. From the figure, it is clear that given any v > 0. dv;. vy >

0. such that vy,7, < v and di =53 — 1y .ﬂé = 3y + vy, 5; = % 3 =Bty — .
_ 1

-

Define 7 )
3.

1 7 (stq)stx

Hy(s) = 1F 4 7 e F1)(s F3)(s Fpi)
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s s+ T s+ 3 (14 gs
where

(@1 = 3)(A = )

‘4‘ — 7 ' ! el
' (1—73)(3 = 5)
PECEEALEEN
(1- 7/32)(31 — 35)
o Q=T -y
<13 — e Y
A-7"8)(1 =7'5,)
If X = 35, % = 3,. for sufficiently small =, 4;,4,. .45 > 0 and hence.
h(t) > 0. If X = 3,,45% = 3, 4, is of the order of ». A;. A3 > 0 and since

1+g3

3, > By. et decays faster than e~*. For sufficiently small = and consequently. for
sufficiently small v, A(¢) > 0. Therefore. p = qTqulI This result establishes that the
string stability property is not lost for a small actuator lag.

3.3.5 Semi-Autonomous control with vehicle ID knowledge

It is desirable to guarantee string stabilit'y or at least uniform boundedness
of spacing errors with as little external information as possible. In such a case.
autonomous/ semi-autonomous implementation is possible. In this section. we will
investigate such a scheme.

Modifying the control law from the earlier subsection.

1. . ’
Ujsl =— m[.ﬁi_l — (C_/1 + /\)61 — q1/\€i — (q4 + /\q?,)(L‘z' — L‘[) — /\Q4(I2‘ — Xy + Z L])]

3 J=1
Notice that the lead vehicle acceleration information is not utilized in this scheme.
If the lead vehicle velocity and position information can. somehow, be reconstructed

knowing vehicle index. then a semi-autonomous implementation is possible.

Spacing Error Dynamics :

With this control law. the spacing error dynamics is given by:

+ ¢ i Mgy + ¢
qd1 14+/\)61+ (¢ 14)61:_ g3
1+ g3 1+gs 1+gs

€1+ (

7
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. g1+ G4 ) Mg + q4) 1 .. .
; L AN+ € = €1 + + ANéio1 + A6
€+<1+q-3 ) 1T 0 1—i—q3[ 1+ (1 Jéio1 + @1 1]
: 1 (s +q1)
H<‘S) = , q1+44

1+ 43 (5 + 14qs )

Hence, ¢,_; = HI(s)e;.

Control Law :

The control law is implemented as follows:

Uil = %[‘%i—l — (Ch + /\)E.l' — q1/\6i — [1 +ﬁ_1 + . +H-_(1'_1)]{(q_1 + )\({3)& + )\{[461‘”
q3
Knowing &;, €. &;_; and :. the vehicle index: we can guarantee that p = ql(_ﬁ%. Knowl-

edge of #,_ is essential: otherwise. ﬂ(s), is strictly proper and H-1 is not realizable.
This scheme is attractive, since it requires the minimum information to guarantee
uniform boundedness of spacing errors for a constant spacing strategy. Autonomous
implementation is dependent on how smooth the signals #; and ¢; are. to allow for
estimating &;_; via numerical differentiation. Drawbacks include requiring very ac-
curate signals of ¢;, t; and requiring g4 <<yl. The number of vehicles in the platoon
is constrained. since our performance objective is to let ||H(jw)|| < 1. While esti-
mating the lead vehicle information, inversion of this transfer function is necessary.
which leads to amplification of the noise.

Another way to utilize the information of vehicle ID is to vary the gains in
the controller depending on the vehicle index However, in order to guarantee uniform
boundedness for this case. the gains have to increase at least linearly. This results in
increased control effort at the tail of the platoon, leading to saturation in the throttle

angle input in the corresponding vehicles.

Real Time implementation: In order to estimate the velocity and position er-
ror relative to the lead vehicle in the platoon using €; and €;(¢) measurements. the

following state space realization is utilized:

Iy = —q1z + 2

)= —qi3 + 23
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= —qzi-1 + (g4 + Ag3)é + Aga

-1
-1 r .
Yout = Z Z ( ) q3 (q4 - Q1q3)]3i-—r+j
J

r=0 ;=0
where
Uist = — (g1 + N)& — g1 A€ — Yout
Assuming that the sampling time is 'T’, implementation in discrete time 1s
given by,
i T2 Ti—l 1
r . 1T 2r (i—-1)! (ke
bk +1) LT ] aw
: _ ol (i—2)! : 4
(k4 1) cia(B)
|0 0 0 1 |

1— —GLT[+QT+M+---+%%
=2
1 — el & T+ QIT +...+(—q,l-—f—Lx— .
[ g1 | (i—2)1] } <q4 + )\q3)6i -+ )\(146;;

1—eal
-1 r )
Yout (K Z Z (1+¢3)" (g4 — ¢193) zimrti (k)
r=03=0

3.3.6 Control With Information of “r” Vehicles Ahead

If a platoon consists of a large number of vehicles. the communication delays
of information from the lead vehicle to the end of the platoon could degrade the
platoon performance significantly. In order to circumvent such delays, a platoon
strategy in which every controlled vehicle requires only the information of vehicles in
its vicinity. is desirable. However, the string stability aspect, of such a scheme has to

be analyzed.

Control Law :
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Consider the following control strategy where every controlled vehicle has

the information of its “r” preceding vehicles:

2

Uist = D Kajdinj = kej(vi = viej) = ko2 — 2imj + 2. Ly)
7=1

k=max [0,i—7+1]

withz, ;=2 Vi<,

Spacing Error Dynamics :

€1 +Z(ku_jél +]fpj€1) =0 (3-7)
J=1

€ + Z kvjeg + kpjfi = Z A"ajéz‘—j + kvjél'_j + kp]fi_j V i>2 (38)
j:l j:]

which implies that

B (s) = st Rugs & oy
jls) = — r
J 82 4+ ijl(kvj's + kpj)

Xrguing in a manner similar to that in section 3.3.3,
r r
]ZHJ(Ju)\ <1 = ) hy=1 ZHJ(S) =1
Jj=1 j=1
From Fact 6, Y a; > 1and ¥ a; =1 <= Hj(s) = aj, a constant.
From the small transfer function gain theorem for string stability of a pla-
toon. we can guarantee string stability in the “weak™ sense only. The platoon perfor-

mance. in terms of string stability. is limited by the above inequality.
Robustness to Actuator/ Signal Processing Lag :

Weak sense string stability is achieved only when H;(s) is a constant. In
order to achieve the best possible performance, weak sense string stability, h;(t) =
a;6(t). When h;(t) is perturbed (by. say. actuator lag), it changes sign and hence.
>"=1@; > 1. Therefore. this scheme also lacks robustness in string stability.

For example, if the actuator were to have parasitic dynamics or if there were
signal processing lags; then

d

T—Tip + Lip = Ujsip

dt
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With zero initial spacing and velocity errors,
r A
éin(s) = X Hipéiijin(s)
i=1

Ho(s) = k82 4 kujs + kp;
S R (LR

where the subscript “p™ denotes the corresponding variable for the perturbed system.

Therefore.

" st 4 15 + @
Z Hjp(s) = — 3L o2 ;
j=1 ST ST T 1S T

At sufficiently low frequency. wo, | X, ffjp(jwo)’ >1= 3l a,>1

3.3.7 Mini-platoon control strategy

String stability is guaranteed in the constant spacing control strategies pro-
posed in [13]. because every controlled vehicle receives information from a reference
(lead) vehicle. The mini-platoon control strategy uses the idea that feeding back in-
formation from a reference vehicle improves the robustness properties of the string.
while reducing the effects of communication delays associated with transmitting the
lead vehicle information. In this control strategy, every platoon is divided into mini-
platoons and the last vehicle of a mini-platoon becomes the reference vehicle for the
following mini-platoon. Figure 3.3 show how the information is transmitted between

vehicles in the platoon. The controller given in [13] is modified as follows:
Si =&+ qei+ qa(vi — Vo) + qa{zi —aies + Y, L)

j=iref+1
where the subscript ref refers to the index of the reference vehicle for the controlled
vehicle (i.e.. index of the leader of the mini-platoon to which the controlled vehicle
belongs). For the sake of analysis. we assume that every mini-platoon consists of “r”

vehicles.

Control Law :
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The control input u;y is chosen to make S, +,\Si = 0. The corresponding
control input is given below:
For nr + 1<i<(n + L)yr. ¥ n =0.1.2.... where n denotes the n-th mini-platoon.

1
it = e t i — (@ A —a)e
—(qs 4+ Ag3)(vi = var) = Aqa(@i = 2nr + Y Ly)] (3.9)
J=nr+1
Fori=nr. V¥V 2=1.2,
! [ + ¢3T (g1 + A€ A
Ujsl = T— | L= Tin-1)yr — A)E; — €;
! 1+ 1T 43T (n-1) h! 0
—(Q4 + /\QS)('Uz - U(n—l)r) - )\94(3«% — T(n-1)r + Z LJ)} (310)
j=(n—-1)r+1

Spacing Error Dynamics :

From the above equations, we obtain: For nr +o<i< (n + 1)r.

. 41+ 94 . Mg + ¢4)
&+ (———+ A)é + € =
(1+QI3 ) 1+gs

For i =nr T 1.

g,'_ + +/\ é,‘_ +/\( él‘_
1+q3[ 1 (fh ) 1 11 1]

g1+ G4 . Ma + g4)
+ A €nrdt + —7T———€nr =
1+ g3 Jénr 1+¢s i

Ei.nr+1 + (

(43D + (g5 + Ags) D + AquD,] (3.11)

1
P énr + (g1 + )\ énr + /\ E.nr +
1+q3[ (@1 ) q1nr] 1+ ¢

where D, = ;rm—x(n_1)r+Z§;(n_1)r+1 L,, describes the spacing error between the lead
vehicles of n-th and n-Ith mini-platoons. The right hand side of the above equation
has terms involving D,, which describe how the mismatch between two successive
reference vehicle's information affects the spacing error in the first follower of every
mini-platoon. With zero initial spacing and velocity errors :

For nr +2 <7< (n +1)r‘.
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and

é71r+1(5> = é(n—l)r+1(3)

\ 549 Since the roots of the polynomial. P.(z) =" — 1= 0.
where H(S) = (1+<13)5+(l<11+%)' POty ( )

are simple and lie on the unit circle. this platooning strategy is string stable in the
“weak“ sense. Due to signal processing lags. the perturbed polynomial is given by
z" —a = 0 where @ > 1. The roots of the perturbed polynomial are all outside
the unit circle and their magnitude is ar. Hence, the spacing errors of the first
followers increase with mini-platoon index. The magnitude of the perturbed roots
gives the average attenuation/amplification upstream from vehicle to vehicle. The
spacing errors attenuate geometrically within the mini-platoon. Since the number of
vehicles in the platoon is finite. in practice, the maximum number of vehicles in a
mini-platoon is determined by the hardware/communication limitations.

The advantage of this scheme is that we need to focus our attention only on
the leaders of the mini-platoon. One could treat the dynamics of a platoon by the
dynamics of its leader in a higher level of control for automated highway systems. If
every controlled vehicle in the platoon has the information of its “t” preceding vehi-
cles. we have seen that constant spacing strategy yields to limited robustness. Instead.
we should organize the platoon into miniplatoons of “t” vehicles. At least. vehicles
in the mini-platoon exhibit geometric attenuation and good robustness property to

actuator/sensor lags.

3.3.8  Mini-platoon control with lead vehicle information

The motivation for this scheme is to improve the robustness property of
the leaders of the mini-platoon by making lead vehicle information available to the
leaders of the mini-platoon. Consider a scheme in which the leader of every mini-
platoon gets information from its preceding vehicle and the leader of the platoon
and dl the vehicles in the mini-platoon get information from their predecessors and
the leader of the mini-platoon. For the sake of analysis. we assume that, every mini-

platoon has “r” vehicles in it. For real-time implementation, it is envisaged that the



39
lead vehicle information is updated on a slower time scale compared to the other
information that is required for feedback control law.

Control Law:

Consider the following control law:

Ujsl = ———[Ljs1 + @& — (@0 + A)é; — quAe; — (qa + Aga)(T; — Tirs1)
1+gs
J
“Ags(x, — @1+ D L)) ¥V ir+1<j<ir+r.i=0.1.2..
ir+2
and
Uipp1 = [#, + ¢3d1 — (g1 + A)éirp1 — @ A€irr1 — (qa + A@s)(Zire1 — 31)
1+¢s
ir+1
(@i —er FY L)Y i=1,2.3. (3.12)
2

Spacing Error Dynamics :

With this control law. we can show that

&(s) = H(8)gjoa(s) ¥ ir+1<j < (i+ 1)y

where
H(Q) — 1 (L’+q1)<b+/\>
L+ gs 2 4 (B 1)) 4 Aluta)

Therefore. the maximum spacing errors decrease geometrically within a miniplatoon.
The spacing error dynamics of the leaders of mini-platoon is given by the following
equations:
Lirp1 ™ L(i—1)r+1 = 1T[Iir — T(i-1)r — (Ch + /\)5i7‘+1 + (Ql +)‘)6(i—1)7‘+1

q3

— A1 €irg1 — (Q4 + )\Q3)(«i7z'r+1 - i‘r(z'—1)r+1) — Aqa(Tirs1 — 1‘(1'—1)r+1)]

which implies that'

Mar + q4) 1

q q 1 .
A 61‘7‘ ‘Z. r —

1+ g3 1+g;3

€irt1 T+ ( Efictyrar + (g1 + A)épiziyrat + Aqr€—1)r+1
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—qgslén 4+ ...+ 6(i—1)r+~2] +(qu+ Ags)[éir +... + é(i—l)r+2} + Agaleir + .. F E(i—l)r+2}
Simplifying the above equation and using the definition of ]51(5),
€iry1 = Hr(s)é(z’—l)ﬂrl

Therefore, the maximum spacing errors of the leaders of the mini-platoon attenuate
with the same geometric ratio.

It is hoped that the maximum spacing errors of the leaders of the mini-
platoon do not amplify with a slower time scale update of the lead vehicle information.

A detailed two scale analysis of this strategy is necessary to implement this strategy.

3.4 Variable Spacing Control Strategies

3.4.1 Autonomous Intelligent Cruise Control (AICC)

It is worthwhile considering the effect of feeding back controlled vehicle's

velocity on the platooning specifications. Consider the following control law:
Ui = kglbim1 — kuby — kpei — By,

The spacing error dynamics is given by:

€1+ (ky + k1)ér + hper = (ke = )3 = k13y

€+ (ko + k1 )é + ke = ha€ioy + ko€ + Rpeig

From the above equations. it is clear that non-zero steady state errors result from a
step change in lead vehicle's velocity. The magnitude of the error is given by —%Au,
where Aw is the step change in velocity. The negative sign indicates that the vehicles
fall hack whenever Av is positive. The spacing between vehicles is higher at higher
speeds. It is also clear that %; is required to be zero for zero steady state spacing
error for any step change in lead vehicle velocity. However, in order to ensure string
stability: &; # 0. Hence. for the autonomous case: zero steady state spacing error

and string stability requirements are at odds with each other. It is intuitive that, the
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magnitude of steady state spacing errors that can be tolerated relates directly to the
robustness of this scheme to actnator/signal processing lags. If the zero steady state
spacing error specification is relaxed. we can define a generalized spacing error of the

i-th vehicle, é;. as follows:
6 =2 — iy + Li + Ry

where h,, is the desired constant headway time ! to be maintained. This is the basis

for AICC law proposed by Chien. loannou and Hauser, [17].

Control Law :

Consider the following law, which requires on-board information only {17] :

T — Tio1 + A€
P

Generalized Spacing Error Dynamics :

iy = — (3.13)

The generalized spacing error dynamics is given by:
hudi + (1 + Me)di + A6 = bioy + Ao
and
huby + (1 + Ahy)by + A6 = 0

From the above equations,

o 1
bisy hesT1

Clearly, p = 1for all A, > 0. This is a very attractive feature of this strategy
considering that no lead vehicle information is fed back. There are two drawbacks of

this scheme:

1. The control effort is inversely proportional to the desired headway time. For
maintaining a small desired headway time, the brake and engine torques may

saturate. This fact is also documented in [6].

'Headway time is defined as the time it takes the vehicle i to cover a distance z; — zi—1 T L,
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2. X small desired headway time implies larger traffic capacity. Hence. there is a

limit on the maximum traffic capacity that is achievable.

Robustness to Actuator/Signal processing lags:

As seen earlier. actuator/signal processing lags can be modelled as
d. .
TRl + TP = Ujsl

From equation 3.13 and the above equation. we get.

] .. . : ,
/-hw(;—tél- thob @t a6 TAS =6 T 6,

"y s
. = 5) =
0;_1 P Thyss + o s? + (1+ Ay )s + X
Claim:
1. For sufficiently small . HE‘I(HP(S))H1 =1

2 LM (Hy(s)lh = 1= 7 < ke,

Proof

1.From an argument' similar to that in Proposition of section 3.3.4. the result follows.

2.A necessary condition for ||~ (H,(s))|l; = 1is that |H,(jw)| < 1 ¥ w. Therefore.
w2 A < (X = hpw?)? F (@t My — Thyw?)?w?
= 0 < 72h2 ! T (R =27k (1 F AR ))w? T AR YV w
From theory of quadratic equations. the above inequality holds if and only if one of
the following inequalities hold:

1. k% —27h, (1 T AR, >0

or
2. (R = 27h,(1+ Ah)) —4A2hi _2hf <0

Both the conditions are satisfied only if 7 < %
This result establishes that the robustness in string stability at a small time

headway is limited.
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3.4.2 Constant headway time control strategy with infor-

mation of “r” vehicles ahead

Feeding back controlled vehicle's velocity results in non-zero steady state
errors for most lead vehicle maneuvers. However, it impros-es the robustness in string
stability to actuator lags and signal processing lags. The degree of robustness in
string stability depends on the magnitude of non-zero steady state errors that can
he tolerated. This scheme has also been proposed independently by Green and Ren
[30].

Control Law :

Consider the following control law:

]

,
Uisl = Z[kajiii—j - ]\",UJ'(’UZ' — L‘l'_j) — kpj(wz- — Ti—j + Lk” — ALULL

j=1 k=max[0,i—j+1]
with z,_; = 7; V¥ 2 <]J. This results in a state state spacing error in i-th following
vehicle given by ¢;,, = —kTmAL where Av is any step change in the lead vehicle's
velocity. In this strategy. the desired intervehicular spacing varies as L, *h,v;. where

hy = — ke
Jkp_y

Generalized Spacing Error Dynamics

A generalized spacing error for this strategy is, therefore. given by:
b, =x;— i1+ L + bt

6; satisfies the following set of equations:

T

b+ (S kg + k) + 3 kpiby = S [hwkaydn + (kaj — 1)d] (3.14)

J=1 =1 J=1

8+ (X kg + )b + Y hpibi = 3 [hagbinj + kujbinj + ki )]

j=1 j=1 =1
Therefore.

i H(S) — Z;:l(ka.]‘SQ + kL-jS + kp])
J=1 ’ st + 29:1{(}%] + kofr)s + kpj]
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Since, 32%_, H;(0) = 1= 3" ,a; > 1. Therefore, this control strategy can. at
best, guarantee “weak” string stability. For ||>7_; kil = 1= Xi_ by 2 EI— To
guarantee string stability and to maintain a small headway time. the closing rate
gains have to be chosen sufficiently high. There is an upper bound on these gains.
which is determined by the input bandwidth/saturation constraints. and hence. there
is a lower limit on k,. The limiting case of the headway control strategy, 4, = 0.
is the constant spacing control strategy, which clearly lacks robustness to parasitic
dynamics in the actuator and signal processing lags as seenin section 3.3.6. Therefore.
an arbitrarily small headway time cannot be maintained. From equation 3.11, the
steady state spacing errors are dependent on the lead vehicle maneuver and may
not decay exponentially to zero. In addition to the above limitations. this strategy
requires the information of dl the “r” vehicles ahead of it, which may put a serious
burden on the communication system.

Consider a hybrid mini-platoon strategy in which the leaders of the mini-
platoon follow AICC while the vehicles in the mini-platoon follow constant' spacing
strategy (with the information of the leader of mini-platoon). The Headway control
strategy with information of “r” preceding vehicles is inferior to this strategy in two

ways:

o Robustness to lags : Follower vehicles in the mini-platoon are robust to actu-
ator/signal processing lags. Robustness of the leaders of the mini-platoon is

governed by the time headway theyv have to maintain.

o Traffic Capacity : The average time headway for hybrid mini-platoon strategy
is h,./r where h,, is the time headway the leaders of the mini-platoon maintain

and r is the number of vehicles in the mini-platoon.

In other words. for the same traffic throughput. the leaders of the mini-platoon can
maintain “r” times the time headway each vehicle maintains in the other strategy.
Since robustness is inversely proportional to time headway. hybrid mini-platoon strat-

egy guarantees better robustness properties.



3.5 Simulation Results

In this section: we will briefly summarize the salient features of all the strate-
gies and show their corresponding simulation results. For all the simulation plots. a
10 vehicle platoon is considered. In all the simulation plot's. the number n on the
plot represents the n-th following vehicle in the platoon. All the vehicles start with
a velocity of 24.5m/s and they are positioned in such a way that the initial spacing
error is zero. The plant' model of the vehicle has a throttle angle saturation rate of
1000°/s and a brake saturation limit of 8000\ — m.

Figure 3.4 shows the velocity and acceleration profile of the lead vehicle used
in the simulations.

Figure 3.5 demonstrates the behavior of spacing errors under semi-autonomous
constant spacing control. In this strategy, every controlled vehicle requires the accel-
eration information of its preceding vehicle in addition to on-board sensor information
like the spacing and velocity error from the radar. As seen earlier in this chapter.
every platooning strategy has an associated string stability polynomial and the spec-
tral radius of the polynomial is a measure of the effectiveness (in terms of string
stability) for the strategy. For string stability. the spectral radius of the polynomial
should be less than unity. X platoon is string stabile in the weak sense if the spectral
radius is equal to unity. For this strategy, the string stability polynomial is z =1
and this strategy is string stable in the weak sense. The gains used for this simula-
tion are: k, = 1;k, = 2:k, = 1. As expected, due to mismatchecl uncertainties in
the plant (discretization etc..). the spacing errors and consequently. the control effort
grow with vehicle index. Figure 3.6 shows the effect of signal processing lags on the
spacing errors. The throttle angle of all the vehicles behind the fourth following ve-
hicle is saturated. In all the above simulations. accelerations of the preceding vehicle
is assumed to be available or estimated accurately. With any signal processing or
actuator lags. the string stability polynomial is = = p where p > 1 and this scheme is
not robust'. Clearly, semi-autonomous constant spacing strategy cannot be used for
platooning.

Figure 3.7 shows the effect, of availability of lead vehicle velocity and ac-
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celeration information to every controlled vehicle. on the platoon performance. The
spacing errors decrease with vehicle index in this case. The gains selected are as
follows: ¢; = 1.0,¢3 = 0.5,X = 1. Figure 3.8 shows the effect of signal processing /ac-
tuator lags. The spacing errors, in the presence of signal processing lag of 50ms, arc
larger in magnitude. The throttle angle increases initially with vehicle index due to
the feedback from the lead vehicle. Since the masimum spacing error decreases with
vehicle indes. the spacing error relative to the lead vehicle remains the same for all
the vehicles at the tail of the platoon. As a result. the throttle angle (control effort)
is the same for all the vehicles at the tail of the platoon. Although the associated
string stability polynomial for this strategy is z = 1, the string stability polynomial
is robust to actuator/signal processing lags.

In obtaining the simulation result shown in Figure 3.9. we have assumed
that every controlled vehicle in the platoon has the information of lead vehicle's
relative position information. The following gains are chosen: ¢; =0.8:¢3 =0.5: ¢4 =
0.4:X = 1. Clearly, the spacing errors decrease with a geometric ratio given by ——

a+qs .

The associated string stability polynomial for this strategy is = = —“—. The string

stability polynomial is robust to signal processing/ actuator lags. In the presence

of small signal processing/actuator lags, although the magnitude of spacing errors is
high. the attenuation ratio remains constant. Figure 3.10 shows this behavior.

In order to obtain the relative position information of the lead vehicle relative

to the controlled vehicle. we plan to do the following:

1. Integrate numerically the velocity of the controlled vehicle relative ot the lead

vehicle. We assume that the lead vehicle information is continually broadcast.

2. Every vehicle is required to broadcast' its position relative to the lead vehicle to
all its following vehicles. Hence, the position of the j-th vehicle relative to the
lead vehicle can he obtained by adding the position of the j-th vehicle relative
to the j-1st vehicle (which is available from sensors like radar) and the position
of the j-1st vehicle relative to the lead vehicle. Estimate using 1lis updated by
this estimate to get a better estimate of the controlled vehicle's position relative

to the lead vehicle.
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Xlthough there are delays/lags associated with obtaining such estimates, all
the simulations do not incorporate such features other than signal processing/actuator
lag. It is recommended, for the constant spacing strategy, that lead (reference)vehicle
information be utilized as much as possible for platooning.

Knowledge of vehicle ID helps attenuate maximum spacing errors.

‘It is desirable to utilize as little external information as possible to guar-
antee the attenuation of maximum spacing errors. Esternal information in the form
of knowledge of vehicle ID and the preceding vehicle information helps attenuate
maximum spacing errors if the vehicle controller model is accurate. The idea behind
this strategy is to reconstruct lead vehicle's relative velocity and position information
from the spacing and velocity error information of the controlled vehicle and feed it
back into the control lam. Very roughly speaking, knowing the controlled vehicle's 1D
in the platoon, we build an observer for the error dynamics of every vehicle preceding
the controlled vehicle in the platoon. Figure 3.11shows the behavior of spacing errors
in the platoon with information of knowledge of vehicle ID and preceding vehicle's
acceleration. In Figure 3.11. the spacing errors are an order of magnitude larger than
the spacing errors in the earlier strategy using lead vehicle information. This is due
to two reasons. First. lead vehicle acceleration information is not available/utilized.
Second, we assume that every vehicle is 1/0 linearized so that there is an exact trans-
fer function relationship between the errors of consecutive vehicles. Although, this
rarely is the case, lead vehicle information is reconstructed using the spacing and
velocity error measurements and the spacing error attenuation is guaranteed. The
other disadvantages of this strategy are : the controller computations for the vehicles
at the tail of the platoon gets complex with vehicle ID and the amount, of spacing
error attenuation that can be guaranteed is limited.

Figure 3.12 shows the behaviour of the platoon with every controlled vehicle
in the platoon having the information of 5 vehicles ahead. The motivation for this
strategy is to investigate how the platoon performance is affected if every controlled
vehicle has the information of "r" vehicles in its vicinity. The string stability polyno-
mial corresponding to this strategy is = = 1. In the presence of any signal processing

lags, the string stability polynomial gets perturbed to = = p where p > 1. The first
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five vehicles in the platoon behave exactly the same way as in the previous case. In
this platooning strategy, the maximum spacing errors of the following vehicles are
guaranteed to be less than or equal to the maximum spacing error of the first follower
in the platoon. Since the maximum spacing error at the tail of the platoon is ap-
proximately equal to the spacing error in the first vehicle. the throttle/control effort
increases with vehicle index. This causes saturation of the throttle at the tail of the
platoon. Furthermore. with signal processing lags. this scheme cannot ensure weak
string stability. This scheme is not recommended for platooning.

Figure 3.13 depicts the behaviour of the spacing errors in the platoon un-
der miniplatoon cont'rol strategy. The rationale behind this strategy is that feeding
back reference vehicle information improves the string stability and robustness prop-
erties. In this strategy, every platoon is divided into mini-platoons of “r” vehicles
each. Within the mini-platoon, every controlled vehicle is assumed to have access
to the mini-platoon leader's information. The leaders of the mini-platoon have only
the information of the vehicle ahead. As one would expect: the spacing errors in
the miniplatoon decrease geometrically with vehicle index in the mini-platoon and
the leaders of the miniplatoon experience larger errors due to the lack of lead vehicle
information. The spacing errors of the leaders of the miniplatoon increase with mini-
platoon index. in the same way the spacing errors increase when only the preceding
vehicle's information is available. as shown in [13]. Miniplatoon can be modeled as a
single vehicle when a constant intraplatoon spacing is maintained. The control input
increases with miniplatoon index. limiting the number of miniplatoons allowable per
platoon. If every controlled vehicle has the information of it's “r” preceding- vehicles.
mini-platoon strategy should be employed, so that improved robustness is obtained.

If we feed the information of the lead vehicle in the platoon to the leaders of
the miniplatoons. it is shown in section 3.3.8 that the performance of the platoon is
similar to the case when every controlled vehicle in the platoon utilizes the lead vehicle
information. A two time scale update is suggested for implementing the nliniplatoon
control algorithm. in which all the vehicles in the miniplatoon get the information
from their respective leaders on a faster time scale and the leaders of the miniplatoon

get the information of the leader broadcast on a slower time scale. However. further
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analysis is required to study the string stability of this scheme.

In order to improve the robustness in string stability: feeding back the ve-
locity of controlled vehicle at the expense of non-zero steady state spacing errors and
consequently. traffic capacity is necessary. In AICC strategy. velocity of the controlled
vehicle is fedback in addition to the on-board information from radar. The advantage
of this strategy is that external informat'ion is not required. The disadvantage of this
straegy is that the control effort is inversely proportional to the desired time headway
and the robustness to actuator lag decreases with decreasing time headway. Figure
3.14 illustrates the behavior of the generalized spacing errors and throttle angles of
vehicles in the platoon. The maximum generalized spacing error and throttle angle
decreases with vehicle index. This strategy does not require maintaining a constant
spacing between vehicles. Consequently. the controlled vehicle is not required to
track the preceding vehicles' acceleration profiles exactly, which leads to a reduction
in control effort. From simulations, a headway time of at least 0.2 sec is necessary to
maintain smooth throttle angles and accelerations.

It is no coincidence that all the (proposed) control strategies which do not
avail of the lead (reference) vehicle information can: at best, guarantee only weak
sense string stability. Since they do not use the lead (reference) vehicle information.
their associated string stability polynomials have at least a simple root at = = 1.
Furthermore. they are not robust to signal processing lags/actuator lags. The advan-
tage of using reference vehicle information is shown in section 3.1 . Therefore. it is
imperative to have a single reference vehicle information for platooning.

If the lead vehicle information is not available to all the vehicles in the pla-
toon. the mini-platoon strategy has some benefits over the other platooning strategy
discussed in section 3.3.6and 3.4.2. Firstly: it can guarantee geometric attenuation of
the spacing errors within the platoon. Secondly, for a medium size platoon of 20-30
vehicles, which can be split into 3 or 4 mini-platoons, me need to focus only on the
first follower in each mini-platoon. The first follower in every mini-platoon can be
made to maintain a relatively large spacing compared to the nominal intervehicular
spacing. Another alternative is to treat every mini-platoon as a vehicle and make the

reference vehicles follow an AICC law. As a result. the traffic capacity achievable is
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much higher than the other strategy discussed in section 3.3.6 and 3.4.2.

The results of this chapter are summarized in Table 3.1 .

3.6 Steady State traffic Capacity Calculations and

Evaluation of platooning strategies

Consider a platoon of .V vehicles maintaining a distance L, from its pre-
ceding one. Let L, be the inter-vehicle spacing in the platoon and L. be the vehicle
length. The ideal (steady state) traffic capacity. [39]. [33]. is given by :

Oid = —§EOOLL——UGh/Z(me/hr

Lo+ L.+

where v is the velocity of the platoon. For the case of spacing control strategies,
L, = Ly. a constant. For the case of headway control strategies, L, = Lg +hwv where
h. is the desired headway time. In order to account for merge and lane changing,
the steady state traffic capacity is derated by 20%. L, is estimated assuming that
no collisions are allowed when the platoons are moving at v.m/s and when the lead
vehicle platoon decelerates at d;m/s? and the following platoon decelerates at dym/s?,

At sec after the lead vehicle platoon has started decelerating.

02,1 1
|_, = L‘CAL‘ +_2—[Z — E
Typical values of these parameters: v, = 30m/s: At = 0.3secid; = 4m/s*:dy =
10m/s*; Ly =1m: L, =76.5m. For spacing control strategy:
2880w
Qact =4 + .7.%_5

For headway control strategy.

28800
Qact = 5 =835

6+ hpv +

From the above formula. it is clear that a lower headway time yields higher
lane capacity. The lane capacities for both the schemes. given by the two equations

above. are shown in Figure 3.15, where N in the plot refers to the corresponding
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Spacing Strategy o Robustness Implementation Capacity
Requirements
Constant Spacing High
With reference 0 Unsafe. Does not | Reference vehicle
vehicle info. only consider preceding | info. broadcast
vehicle info. requires radio
Autonomous Control | >1 | Sot robust
Semi-.Autonomous = 1 | Not robust preceding vehicle
Control info. required
Control with <l|p=xl Require preceding
knowledge of vehicle info. and
vehicle 1D accurate vehicle model
Control with lead < 1| Robust Require preceding
and preceding and lead vehicle info.
vehicle info.
Control with info. > 1 | Not Robust Info. of “r” vehicles
of “r” vehicles should he broadcast
ahead
Miniplatoon Control | = 1| Not robust Info. of preceding and
entirely lead vehicles in the
t miniplatoon required
Variable Spacing F Low to Medium
AICC = 1| Proportional to
time headway
Headway Control = 1| Proportional to Info. of “r” vehicles
with info. of time headway should be broadcast
“r” vehicles
Table 3.1: Summary of Platooning Strategies
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platoon size. From the previous section, a headway of 0.2 sec is chosen for comparison.

It can be seen that the spacing control has atleast 30% more traffic capacity than the
headway control.

Recommendations: Higher traffic capacity is achievable only by constant spacing
strategy. In order to guarantee string stability performance, lead vehicle acceleration.
velocity and relative position information should be broadcast. This strategy is rec-
ommended for it's robustness property: guaranteed string stability performance and
achievable high traffic capacity.

In the absence of any external information, AICC strategy is recommended,
since it is the only strategy that guarantees weak string stability. If information of 1"
preceding vehicles is available only, a hybrid mini-platoon strategy is recommended.

In this strategy. “r” vehicles form a mini-platoon. The leaders of the mini-platoon
follow XICC while the followers in the mini-platoon follow a constant spacing strategy
with lead and preceding vehicle information. The advantage of this strategy over other
strategies is that the leaders of the mini-platoon follow weak string stable dynamics

and the spacing errors attenuate geometrically within the mini-platoon.



Figure 3.2: Root, locus of the poles of ffp(s) with variation in actuator lag,7
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Constant spacing control of a 10 vchicle platoon
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Performance in the last miniplatoon

0.04
16

0.03F A P B . .

0.02

0.01

-0.01

Spacing Error(m)

-0.02

-0.03

-0.04

-0.05

_ L S ) i 1 L
8] 5 10 156 20 25 30 35 40
Time(sec)
Corresponding Throttle Angles
) . | —_— S

-0.06

70

60

o
o}

b
2

[0}
o]

Throtlle Angk(eg)

N
0

[—X-1
Time(sec)
1.5 T T T T T T

Acceleration(m/s"2)

15— I j } | ; : _
95 b U 15 20 25 A0 R 43
Time(sec)

Figure 3.14: Behavior of the vehicles in the last hliniplatoon
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Chapter 4

Adaptive Longitudinal Control of
Vehicle Platoons

Platooning of vehicles with close intervehicular spacing requires a high per-
formance longitudinal controller. Such controllers should not only ensure the stability
of every individual vehicle in the platoon, but also the uniform boundedness of spac-
ing errors (i.e that the spacing errors of all the vehicles in the platoon is bounded by
a constant which relates to safety in the platoon), even in the presence of parametric
uncertainties. Since safety is a prime concern: uniform boundedness of spacing errors
should atleast be guaranteed. Sheikholeslam [37] presents an indirect decentralized
adaptive control algorithm for a platoon of vehicles. In this chapter, we present, a
direct decentralized adaptive control algorithm which satisfies the same performance
objectives. The advantage of such a direct scheme is its ease in on-line implementa-
tion. This chapter is organized as follows :

In section 4.1. we investigate the effect of parametric uncertainty on the
platoon performance. In section 4.2, we present the adaptive control algorithm. In
section 4.3, we examine the platoon performance with the adaptive longitudinal con-
troller and discuss the conditions for parameter convergence. In section 4.4. we discuss

the simulation results.
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4.1 Effect of parametric uncertainty on the pla-

toon performance

From equation 3.2 . a model for control for the member vehicles in the
platoon is given by:

, 22 :
U; — G — fi

M,

T =

(4.1)

where z,.u;, ¢;. f;. M; are the position, control effort, effective aerodynamic drag coef-
ficient. rolling resistance friction, effective inertia of the i-th following vehicle respec-
tively.

Using the control law described in section 3.3.4, we cannot, in general. guar-
antee string stability in the presence of parametric uncertainty. TO ensure uniform
boundedness of spacing errors is to guarantee a weaker version of string stability.
Decentralized controllers should be designed to ensure string stability in the absence
of parametric uncertainty, so that with parameter adaptation. uniform boundedness
of spacing errors can, at least, be guaranteed. In this section, we investigate the effect

of uncertainty on the performance of the platoon.

4.1.1 Effect of uncertainty in mass of the vehicle

We consider the control law described in section 3.3.4. This control law
incorporates the lead and preceding vehicle information and guarantees string stability
in the absence of parametric uncertainty. The sliding surface S, in this control law is
chosen such that S; = S;_; yields string stable dynamics. Consider the sliding surface

described in section 3.3.4 :

Sii=¢ +91€z +€/3(Uz‘ — v +(14(~Tz' -2 +Z L;) (4.2)
=1
The control effort w; is chosen to make S'li +,\1Shv =0 and is given by:
wi = il + fi + Mg (4.3)
1 . , .
Uisl = _[171'—1 + @331 — q1€i — qq(vi — Ul) - /\Sli} (4.4)

1+4¢s
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For individual vehicle stability. ¢;,¢s3.q4,X = 0. Henceforth, 1/;.¢,, f, represent the
estimates of mass of the vehicle, effective aerodynamic drag coefficient, and the effec-
tive tire drag for the controlled vehicle respectively. Similarly! 1. &,. fl represent, the
estimation errors (difference between estimated and true parameter value) of the mass
of the vehicle. aerodynamic drag coefficient, tire drag respectively. In the presence of

uncertainty in the mass of the vehicle,

U; = Cii‘? + fi + Jj[iuisl (4.5)

so that

) M;

T, = TLUZ‘SZ (46)

The transfer function that relates the spacing errors is given by:
, a—1

G(s) := —(s) =

(<) al(S) s Fa( /\+%}—m%—«5+/\f:—234]

; : a (s + aq1)(s + A)

H<5) =7 (s) = 2 Qtags : AMai+gs) (4.7)
€1 (1 + q3) (5 + a[( 1143 + /\)S + 1+qs D

where o = i

M

Proposition 1 : Given H(s), and that g; > 258t X # ¢, X # 22 there exist

two constants % < 1.3, > lsuch that V o E [3. 34], |[|A]1 —

q1 +Q4

The intuition is that the impulse response, k(t), is a continuous function of
a. If A(t) >0 for « = 1.then A(t) > 0 in some neighborhood of @ = 1. Therefore.
\|h1]; does not change for small perturbations in « around unity. The poles of ﬁ(s)
should be simple so that 2(t)> 0 Vv # > 0. We can also guarantee that &; — 0
asymptotically whenever the lead vehicle reaches a steady velocity after a maneuver

in finite time. Proof of this proposition is given in [44].

Proposition 2 : Robustness to mass variation

If ¢ > X H# g, X # 4 9——(& then the decentralized control given by equation 4.3

1+
ensures uniform boundedness of spacing errors of member vehicles, for all bounded

acceleration maneuvers of the lead vehicle in the platoon.



Proof Let
: ¢+ s Mg + g4)
A(s) = & -+ +
(s) = 5"+l o
Let 7;. 3; be the minimum and maximum absolute values of the zeros of A(s)V a €
[;31. J)}J Let
(83
C i — i— 0
1= €(0) 1+q3€ 1(0)
' ) . q1 + 94 g1 -+ A
C = €; e €, 0 + ———+/\ €; — €~ 0
= 4(0) = T (0) F al( 2 Nail0) = P2 (0)
. C, + C,
Gi(s) = H(s)eiq(s) + ;(t) 2
Define
CQ = C; - SZC]

(s + 32)C1(6(0). &(0)) + Calei(0). &(0))
(s)

&s) = H(s)eio(s) +

It now follows that.

¢ Hei—llloo‘*"’C” (1+¢3)|Cq)

1]l S
el P B aMgr + qa)

Since C,.C, are linear functions of ¢,(0) and ¢;(0), uniform houndedness of spacing

errors can be guaranteed.

The error in the first following vehicle is governed by G‘(s). Because of pa-

rameter mismatch. maximum error in the first vehicle is dependent,on the magnitude

and frequency content of the lead vehicle maneuver and string stability cannot' be

assured.

3, 3, indicate the degree of robustness in string stability to variations in
mass. If ¢ = 3.¢3 =1.qs = 1X =4, 5 <0.9,3, > 1.166. With this choice of

control gains. we have robustness in string stability to a 10% variation in mass. The

proof of uniform boundedness relies on the fact that ¢; # 0. i.e, the availability of

lead vehicle's relative position to every controlled vehicle.
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4.1.2 Effect of uncertainty in rolling resistance and mass of

the vehicle

With uncertainty in mass of the vehicle and rolling resistance moment. the

control effort u; is given by:
ui = Myuiq + cii? + fi

Hence, for 1 > 2,

) A o1i(s)
€(s) = H(s)€_1(¢

(s) (s)éi—1(s) + As)

. + ¢4 Mar + gq)

Als) =& +a(BTD Ly, A7)

() = [(1+Q3+ s+ 1+ g3 }

| i fia

(1) = — —
oult) = 3r =
For : = 1.
. ¢+ Gy ) Magr + g4) ]E
€ + Qj{ ————— /\ —_— = - _1
1 [( 1 + s + )61 + 1 + gs 61} (a 1)‘7"1 + -"’\/[1
Define

f - fi
I'M-'(O)Hoo = sup M(U)‘

Proposition 3 : Robustness to mass and tire drag variation

If

1. the conditions in Proposition 1 hold

2 15Ol 1€(0)] . [16(0) [ excst

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

then sup; |l¢;||~ is bounded (i.e the spacing errors are uniformly bounded in time

and vehicle index),

Proof From equations 4.9 - 4.12. it follows that

el < lta
Mg + ¢4)

(@~ Dl + 117l + G100} e + [0} )]+ 20}
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o

where 3, J; are the minimum and maximum absolute values of the roots of A(s) V «
[3[, Bh] For all ¢ 2 2,

I
M

71 leiosloo + 2(1+¢3)

[eilloe < -
G1+ q4 Mg + q4)

{ (4.14)

where C is the constant associated with the initial conditions. Clearly, sup; ||€]]

is bounded.

Although the spacing errors are uniformly bounded in the presence of un-
certainty in the rolling resistance moment, steady state spacing errors do exist. One
may to avoid the problem of steady state errors is to incorporate integral action in
the definition of sliding surface given by equation 4.2.

If there is any mismatch in the aerodynamic drag coefficient. individual
vehicle stability cannot be guaranteed and hence. uniform boundedness of spacing
errors or string stability cannot be assured. Parameter adaptation is required to

improve the robustness of the control algorithm.

4.2 Direct Adaptive Control Algorithm

We assume that the lead vehicle makes a bounded velocity. acceleration and

jerk maneuver. In the presence of parametric uncertainty, the control effort is given

by:

wp = Gaf + fl + Miugy (4.13)
Hence.

. 14qs ~ .

Sti+ AS1 = :}_qa [Miuga + &z} + fi] (4.16)

Define a Lyapunov function candidate

. M S: o AME& 72 ,
Vi = 1_}_(137%— 1 + ;234“;’3? (4.17)




Choose the adaptation laws as follows

; 1
M, = ——Suu (4.18)
T
. 1 .
& = ——Suit (4.19)
Y2
A 1
L = ——5 (4.20)
/3

4.3 Analysis for uniform boundedness of spacing

errors and parameter convergence

With the choice of adaptation laws and control in the previous section, we

obtain

. AM;

Vi = 5121 <0 (4.21)
I
. 22 f

B = Myuis + &d} + f, (4.22)

A,

From equations 4.17 and 4.21, it follows that Sy; € Lo, N Ly: Ml-.él-,f,- e L

4.3.1 Uniform boundedness of spacing errors

Proposition 4 : Effectiveness of Parameter Adaptation
For all bounded

1. ||A1(0)

2. %l[(f)

the control law given by equation 4.15 together with the adaptation laws given by

equations 4.18 - 4.20 guarantee that

1.sup; |[M;llx.sup; [1¢ills.sup; ||fill are bounded. In other words, all the

parameter estimation errors are bounded uniformly in time and vehicle index.
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2. sup; |le/llsrsup; [|€i]]ses sup; ||wil]sc.sup; [20:]| are bounded. This implies
that all the spacing and velocity errors are uniformly bounded in time and

vehicle index.
3. E, ¢, — 0 asymptotically
4. If,in addition, 7;(t) E L"". then & — 0 asymptotically.
Proof

1. By hypothesis, ||V7(0)|] exists. Since Vi(t)is decreasing. sup; ||Vill < [|V(0){|a
Therefore, sup, |[S1i|loc:sup; |IMilloossup; |[¢illeessup; |1fill are bounded.

Let sup; ||S1ill < K. where K is some positive constant.

(L+gs)ér + (1 + ga)e1 = S (4.23)

(14 a3)é + (g1 +qa)& = &1 + quéis + S — Suim (4.24)

It follows that

o Ko+ (1 +93)/[e(0)]l

€1]lec < 4.25
el p—— (4.25)
falle € T 1K (1 gs) (0] (4.26)

' G . 2K, + (24 ¢3)[€(0) ][00 97
il < el + = = (427

Hence, sup; |lell« < K. where K, is a positive constant. The proof relies
on ¢4 # 0. i.e.. that relative position of the lead vehicle is available to every

controlled vehicle.

Observe that' sup; ||Sy://2 < X -From Fact 2 of the previous chapter. we know

that if the impulse response. %(t), of a trausfer funciton. H(s). is always positive.
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Ut

then all the input/output inducecl norms of the transfer function are equal. As

a consequence.

S1i = Shi-all; .
4 Hei—lHQJFH 1 1 1Hz+A2

leill2 <
g1 + g4 g1+ g4

where i’ bounds the 2-norm of exponentially decaying response due to initial
conditions. Since Si; E L,, it follows. from equation 4.23. that' e, E L,. Since

sup; ||S1il]2 < ><.it implies that sup; |||l < co.

Rewriting equation 4.24,

N 1 . -1 = 1 S ;T S i
‘- Lol ot qreic1 — (n + qa)ei + 51 li—1 (4.28)
1+g; 1+gs
: : (2q1 + qa) K, + 2K,
= il|oc < i— fore) 4.29
el < 7 —léiall + P2 TIORE (4.29

Clearly. sup; |lé|~ is bounded. By a similar argument, sup, ||é]]2 < x
Since sup,; {||€]x. ||€ill2: |lé]lx < oo}, by Barbalat’s Lemma, €,(#) — 0.

3. T |2 e )& 0. |1 Fil s 115:(0)]| are sufficiently small so that for some ¢ < 1,

m < ¢, then wu;y. &; are uniformly bounded in time and vehicle index.
2

Su =€ qiei + 3w + qatd; (4.30)
where
lbl'(t) = i’l’ — 11 (431)
’lLfi(t) =r;, — I+ Z L]‘ (432)
1
Sii— S = (14 g)w; + (q1 + qa)w; — Wiy — qrivy—y (4.33)

By an argument seen earlier for ;. we conclude that sup,{|lw;|l, [[i@il] <, [lwills} <

o¢ and that. by Barbalat’s Lemma. w; — 0 for all 7.

1L GEi4fi
Uist = 7 n qB[__Tiu(i—l)sl + _Ul—f — 1€ — qa(vi — vr) — ASy] (4.34)
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By hypothesis. T(YiqT) < ¢ < 1. Since all the other terms on the Right Hand
Side are uniformly hounded, it follows that u;y is bounded uniformly in time
and vehicle index. From equation 4.22. z; is also bounded uniformly in time
and vehicle index. It also follows that, E; is uniformly bounded in time and

vehicle index.

From equation 4.16. it follows that S;, € L.. Hence, by Barbalat's Lemma.
Sy — 0 asymptotically. Since sup; {||éi|lo,|l€ill2, ||€i]] } < it follows, from

Barbalat's Lemma. that ¢;(¢) — 0.

.Sy, is uniformly continuous if < $Z1, 2. ¢ are bounded and continuous

From equations 4.4, 4.22. we have

1 .d. d ‘

.1'5 = l i — L. . /\51 435

e 1+ (]3[ dt’ 1 qul‘ — Q1€ (14( ll) ] ( )
d., AL- Ui + Gii? + fz. Mty + 28008

@ Mi (4.36)

Substituting equation 4.35 into equation 4.36

d. M d - Mi(gs i — qiéi — qu(3i — &1) — \S;)
- = /0=
dit T (14 ge)Mat (14 g3) M,

- ~ 2 o Ny
Mo + ¢ + fi + 262,
M;

Since ﬁ)\—I < ¢ < l.and all the terms on the Right Hand Side of the above

equation are uniformly bounded. it follows that #,, and hence. i, are uniformly
hounded. Since

1+13

511 1 J_[l

H[ Usel + C z; +f + Mt + 26;2;% i] (4.37)

it follows that Sy; is uniformly bounded. Since S;; and the Right Hand Side of

equation 4.16 is continuous. it follows that SU is continuous, and hence. Sh- is



uniformly continuous.

Since limy—oc | [} S1:(7)d7] =151(0)] < |S1]ls and Sy; is uniformly contin-
uous. it follows, by Barbalat’s Lemma. that S;; — 0 asymptotically. Therefore.

by equation 4.2, ¢; — 0 asymptotically.

4.3.2 Parametric Convergence

Since S;; T ASy; — 0 asymptotically, Mu,y +éiif +ﬂ- — 0 asymptotically.
For parametric convergence, Persistence of Excitation condition has to be satisfied.
Let W; = [u;y 22 1]T. Then, there should exist three positive constants. §,+;.~;

H

such that
t4-8
ol > /t WWldr > w1 ¥ >0 (1.38)

Since €. é.¢, — 0 asymptotically. w;y & &, 7% ~ le I 2 = Ao + Ay sin(wt) where

Ag > A; > 0. choosing 6 = %:

6r A2 0 0
T 2, Al A4 2 423127 A2\ 127
JowaTa sl 0 (s iy A oaianis (a3
; (g i i

The above matrix is positive definite V' A; > 0. Hence, parameter convergence is

ensured.

4.4 Simulation Results

Simulations are performed for a 3-vehicle platoon. The plant, in all the
simulations considers the effects of slip between the tire and the ground, slip across
the torque converter, manifold air dynamics. and the lag in the brake torque. all
of which are neglected in developing the controller. In all the simulations. dl the

vehicles in the platoon start' with zero initial position and velocity errors. The lead



vehicle in the platoon makes the following acceleration maneuver:

0 0<t<5
alt)= | -l2sin(2=20) 5 <t <310V
0 t>3+10N

where N is a positive integer. The following gains are used for simulating the 5-
vehicle platoon: ¢; = 1. ¢3 =1, ¢4 =05, X =10, » = 28.0. ~, = 0.008 ancl
~3 = 30.0. In all the figures that follow. the number “i" on the figure represents the
plot for the i-th following vehicle. Figure 4.1 illustrates the effect of uncertainty in
mass of the vehicle on the platoon performance. «. shown in the figure. denotes the
ratio of the estimated mass used in the controller and the true mass. As expected,
the peak spacing errors decrease geometrically at a ratio of % with vehicle index. The
spacing errors go to zero asymptotically. Figure 4.2 depicts uniform boundedness
of spacing errors in the presence of uncertainty in the mass and rolling resistance.
The controller's mass estimate is 20 % less than the actual estimate and the rolling
resistance estimate is 0.0 Nm. We have non-zero steady state spacing errors in this
case. Since all the vehicles are identical (including the estimates), ¢1,(t) =0 V > 2
and hence. by equation 4.9 the steady state spacing errors decrease with vehicle
index. Figure 4.3 describes how uncertainty in aerodynamic drag coefficient affects
the performance of the platoon. For this simulation, the controller has no knowledge of
the aerodynamic drag coefficient and the rolling resistance moment. i.e ¢; =0. f; = 0.
As in the previous case, the estimate of mass is 20 % less than its true value. The
maximum spacing errors and the steady state spacing errors are higher than before
clue to the aclditional uncertaintv. Figure 4.4 demonstrates the effectiveness of the
adaptive controller. It can he seen that the errors go to zero asymptotically and the
maximum spacing errors are significantly smaller compared to the non-adaptive case.
Also. the peak spacing errors decrease monotonically with vehicle index. Figures
4.4. 4.5 show how the parameters behave during adaptation. Parameters do not
converge, but oscillate in the neighborhood of their true dues. This is clue to the
fact that the controller model neglects four states associated with torque converter,

manifold air dynamics, slip between the tire and the wheels and the lag in delivering



the desired brake torque. [h]
The robustness of adaptive control algorithms and parameter convergence
to singularly perturbed actuator dynamics is a difficult, problem to be resolved. In

this dissertation. no attempt has been made to investigate this problem.
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Chapter 5

String Stability of Interconnected

systems

Earlier research on interconnected systems focussed on vehicle following ap-
plications [26], [22]. [13]. [35]. [19], control of distributed systems, (e.g. regulation
of seismic cables, vibration control in beams etc..) [10], [29]. signal processing [5].
power systems. Loosely speaking, string stability of an interconnected system implies
uniform boundedness of the state of all the systems. For example. in automated
vehicle following applications. tracking (spacing) errors should not amplify upstream
from vehicle to vehicle for safety. Similarly. deflection at any point in a beam or a rod
should remain bounded at all times. Spatial discretization and control of such dis-
tributed systems have relevance to the problem of string stability for interconnected
systems. Although a precise definition of string stability was not coined. Kuo and
Melzer [26], Levine and Athans [22] were seeking optimal control solutions to the
automated vehicle following problem. Chu defined string stability in the contest of
vehicle following [19]. In [5]. Chang introduces a stronger version of stability for
interconnected systems: namely, “~ -stability™ for infinite interconnection of linear
digital processors. Intuitively, “~-stability” ensures that the state of al the systems
decays to zero exponentially in time and system index. In this chapter. we generalize
the concept of string stability to a class of interconnected systems and seek sufficient

conditions to guarantee their string stability. We also examine their robustness to



structural and singular perturbations.

This chapter is organized as follows. In section 5.1, we define string stability
and asymptotic string stability, we present "small-gain” conditions that guarantee
string stability for a class of interconnected systems and we demonstrate that expo-
nential string stability is preserved under small structural perturbations. In section
3.2. we prove that every esponentially string stable interconnected system is string
stable in the presence of small singular perturbations. In section 5.3. me discuss direct

adaptive control of such interconnected systems.

5.1 String Stability

We use the following notations: [[fi(+)!| or simply || fi]|o denotes sup,sq [ fi(t)]
and || f;(0)]|~ denotes sup, |fi(0)]. Forall p < oo, ||fi(-)!|, or || fill, denotes (f5~ l.fi(z‘)]pdt)lﬁ
and [|f,(0)ll, denotes (3 £,(0)).

Counsider the following interconnected system:
o= flei oy o Zimrs1) (5.1)

wherei € N, 2o, =0V i<j,2eR", f:R"X -+ xR" — R"and f(0.-.-,0) =

rtimes

0.

Definition 1: The origin @; = 0, i E A of the interconnected system 3.1 is
string stable. if given any £ > 0, there exists a 6 > 0 such that |[2,(0)||, < ¢ =

sup; |Jzi( )|« < e

Definition 2: The origin z; = 0, ¢ E A of the interconnected system 3.1is
asymptotically (exponentially) string stable. if it is string stable and z;(t) — 0

asvmptotically (exponentially) for all i E AN, forall ||2;(0)]|~

X more general definition of string stability is :

Definition 3 : [, string stability The origin ; =0, ¢ E A/ of the interconnected
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system 5.1is [, string stable if for all e > 0. there exists a ¢, such that
|z (0)]], < 1 <— sup ()], < €

where

>

i)l = (3 ailt))?

1
Definition 1of string stability can be restated as . string stability of Defi-
nition 3. Henceforth, we will deal with string stability according to definition 1. The
following theorem proves. under some ‘'weak coupling”" conditions, that any count-
ably infinite interconnection of exponentially stable nonlinear systems is string stable.
Clearly, a string of uncoupled exponentially stable systems is asymptotically string
stable. Intuitively. any interconnection of exponentially stable systems is string sta-

ble, if the interconnections are sufficiently weak.

Theorem 1 : Weak Coupling Theorem for String Stability

If the following conditions are satisfied:

o fis globally Lipschitz in its arguments. i.e

Flyy) = flaoz) Sl =zl + o+ Llyr = 2 (5.2)
o the origin of ¢ = f(x.0....0) is globally exponentially stable.

Then. for sufficiently small /;.7 = 2,....r. the interconnected system is globally ex-

ponentially string stable.

Proof Since the origin of + = f(2,0,...,0) is exponentially stable. by Converse

Lyapunov Theorem. there exists a Lyapunov function V(z) such that

arllz ]2 < V() < anlja]? (3.3)
a fz.0..... 0) < —aylfxl)? G5
xr
oV
5=l < asllx]| (5.5)



For the sake of convenience. we denote V' (x;) by V;. Then.

w Ty

Vi= —fla,@imge o Zicyt)
oV v,

= ‘—‘-——-f(él’ria 07 . ) + _‘{]L(li_ R I 4Ci~r+1) — f(l’l 0..... O)}
dz; dr;

< —alfas] [ + aal 2l (X Ll )

=2
.. . . 2.2 . .
Using the inequality that vy < 3%, the above equation results in

(a1 — F Y5 )

Vi< — 2= iy 2N LY 3.6
- ap T 7&1 Z -t ( )
Qg r I
If Zf_f l; is sufficiently small such that }%_,1; < &ﬁ%;ﬁ’ then ﬁi"— >
s 3705 1; > 0. Consequently,
Oh a3 -
Vi)l < SN ZlmzﬁﬂHm+¥®) (5.7)
01— 5 2=
Since 37, [, is assumed small enough such that = 2 Z =2l > ﬁ— o l, it follows

that the roots of the polynomial P,(z) = z""1 WZ , 1,z"=771 lie within
the unit circle. Therefore. from the BIBO property of stable LTI systems, there

Vi()]s < Ksup,; V;(0). where i’ depends
on a.ap.ar.az and 35 ,1,.  Given any £ > 0, choose ¢ = T%ZE' Clearly. if
l2i(0)]lee <0, sup; [lzi()]|x <.

Let d > 1. Define V(d~'.t) = X%, Vi(t)d~'. Clearly, V(d~'.t) is defined

whenever the weak coupling conditions are satisfied and whenever ||z;(0)|]~ exists.

0o _ — s
= S Tit)d < —Va P () P 2=l
=1 Qh

Clearly. P.(d) > Owhenever d > 1> p(P,(z)), the spectral radius of the polynomial
P.(z). V' — 0 exponentially and hence, V;(¢), z,(#) — 0 exponentially.

From the definition of string stability, it is clear that the string stability of

an interconnected system guarantees the stability of every subsystem. Under some
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stronger coupling condition, oy > %37, /;, any finite interconnections of 5.1 is
asymptotically string stable. In the vehicle following applications. although the num-
ber of vehicles in every platoon (electronically interconnected system of vehicles ) will
be finite, it is necessary that the stability of the platoon be independent of the size
of the platoon to prevent the saturation of the input actuators. Xnother interesting
feature about the string stability of an interconnection of exponentially stable systems

is that it is preserved under small structural perturbations. Consider
o= fxi oo Ticey1) FeflTin o Ticrgt)

Assume f(0,...,0) = 0 and [|fo(pr.-...pr) = fiolgr . q)ll < Xio Uysllps — 4l

From Theorem 1. the interconnection of the perturbed systems is string stable if
"Loas(l; + elyy) as(l; + ely;)
(a1—0361f1)—2“—h> Z——”J"
5 2 (a7 2
J=2 3=2
This condition is satisfied when
ag(aj+ay) ,
Q1 — 3—2—01— ;_21
asly + calotan) as cw+ah) ZJ )1

This concludes the proof that string stability is robust to small structural perturba-

€ <

tions. It is desirable that the string stability property be preserved in the presence
of parasitic actuator dynamics. In the next section, we present the conditions which
guarantee string stability of the origin of the interconnected system in the presence

of such parasitic actuator dynamics.

5.2 String Stability Of Singularly Perturbed In-
terconnected Systems

Before proceeding to study the string stability of the interconnected system.
we present a result on the stability of a singularly perturbed system from [21].
Theorem 2 (Robustness of Exponentially Stable Nonlinear Systems to Sin-

gular Perturbations): Consider the autonomous singularly perturbed system

T = filz,z) (5.8)
€2 = g, ) (5.9)
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where € R", z € R™ and assume that the origin is an isolated equilibrium point and
the functions f; and g; are locally Lipschitz in an open connected set that contains
the origin. Let = = h;(x) be an isolated root of 0 = g(x,z). such that 4;(0) =0. Let

y =z — hi(x). If the following conditions are satisfied

e The reduced system is exponentially stable, i.e there exists positive constants

oy, ap. 1. a3 and a Lyapunov function V() such that

arlz]|* < V(z) < aplla]]®

%‘?]‘1(2 hi(2)) < —oqlz]]?
12 < aollel

e The boundary layer system is exponentially stable. uniformly for frozen z. i.e

there esists positive constants 3, 35, a2, oy and a Lyapunov function W(z, y)

such that

Billyll* < W(a,y) < uliyl)?
oty + (@) < —aalyl?
5ol < aslle ol

e There exist positive constants. Jo and ~ such that

[GW' oW dhy
dx dy Iz

[l + ha(x)) < Sllzlllyl] + +/ly!?

Let e = 0_13&132' Then the origin of the singularly perturbed system is exponentially

stable for 0 <t <¢.
Proof See Theorem 2.1 and Corollary 2.2 of [21]

Intuitively. origin of the perturbed interconnected system will be string sta-

ble if origin of every perturbed subsystem is stable and the origin of the **reduced"
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interconnected system is string stable. This observation leads us to the following

theorem.

Consider the following perturbed interconnected system:

T, = f(@ 20 Ticts e Ticpg1) (5.10)

€z, = gla;.z;) i eN (5.11)

where f :R*"x R™ x R*" x .-- x R' — R",
(r—=1)times

g:R*xR"™ —R™ Let f(0,...,0)=0;¢(0.0) =0 and let z; = h(x;, ....z;-r11) be
an isolated root of 0 = ¢(uw;. z;). Let y; = z; — h(x;) and let ~A(0) = 0. and f,g.h be

sufficiently smooth Lipschitz functions.

Theorem 3 (Robustness of Exponentially stable Interconnected Systems
to Singular Perturbations):

If the following conditions are satisfied:

1. Let there exist a Lyapunov function. V'(z;), such that

aqffaill < Vi) < anflai?

ov
ami

Fleh(z) vy viceg) S —aqlfasl]? + ialj‘fl’i—ﬁl‘fz

with ay; > 0 and o > 2o auje
oV
150 < aslle]

These conditions imply the string stability of the interconnected of reduced(unperturbed)

systems.

2. There exists a Lyapunov function W {x;,y;) such that

Billyl[* < Wi(eiy) < Sl

aw .
Tg(lm yi + h(ry)) < —GzHyin
Y.
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oW oW oh

(e dv: Jy; da;

o @iyt b i) < Sallll il + )

vl I? + D vlleisall?
Jj=2

with +; > 0. This condition implies the exponential stability of the singularly

perturbed individual systems.

Then. the singularly perturbed interconnected system is string stable.

Proof: f}"_, cy; # 0. let k = 111111{—%2——2 3}, Otherwise, let k = 111111{+ e

Define v(x;,y;) = 2(V{(x;) + AW (z; )) Lsmg shorthand notation v; for z/(zjl_ yi). Vi
for Vi(z;) and W, for W (x,,y;). there exists a 5y such that

Vi

e [f(rlvyz+h( ) 'ﬂIl’—T+1>_f(lfiah(xi)ﬂ"'7:Ei—7‘+1>} S 31“%“”!];”

o] zil|® J;WzHyzHQ << an ||zl w:k3thz‘||2

L 4

1 . .
iy = 5[V + kW)

= Slanllall + il + X avllrisl’]

j=2

[——lelz + Sall@allyil| + AHwill* + Z illzic e |7]

=2

< =Ml + ull?) + 3 2

dork(ar —evy) —e(3 + Fok)?
dlear Thiaz —er) + \J(ear — k(ay —ev))2 Fe2(3 T 3,0)2)

Since A(¢e) is a continuous function of e, define

= 2D S (o, 4 ko)

=2
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Since XY"_,9; <Xj=; a1;. from Assumption 1. it follows that F(0) >0 and
tag 00k : : .
F(4—1—-—amk+(31+32k)2) < 0. By intermediate value theorem, there esists ¢; such that

0<eq < ﬁiB—W such that vV 0 <& <e¢4. F(e) > 0. Therefore.

o 2 ) S oy Ll 2Me)
v < /\(6)(“11‘1 + HULH ) + E ;(Qlj + /]) 5 > an Vi + E :(01] + k)i
j=2 4 =2

By an argument, similar to that in Theorem 1.there esists a constant iA” > 0. such that
N ()lse < K||vi(0)|<. This proves that the interconnection of singularly perturbed
svstems IS string stable V. 0 <& < ¢,.

It also follows. by an argument similar to that in Theorem 1.that v; — 0

exponentially.

The above theorem justifies the use of control based on reduced(unperturbed)

system model.

5.3 Adaptive Control of Interconnected Systems
Consider the following open loop interconnected system :

é:z' = fo(fi- {1’—17 R r‘fi—l‘-H) + g(él)ul

where & E RPTIT! where p,q are positive integers. As assumed earlier. £; = 0 for
all ; < 0. f,,g are smooth vector fields v; € R and : € A/. The output of the i-th
subsytem is h; = L(&;) with h; € R. The objective is to find a control such that the
states of the closed loop interconnected system are always bounded and go to the
origin, £, =0. i E NV, asvmptotically.

The following assumptions are used for obtaining the control effort and an-

alyzing the closed loop behavior of the interconnected system:

e There esists a global diffeomorphism z; = 01(&),yi = ¢2(&) with z; € RPFL,
y; ER? and
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-(p) __ _(p+1)

”vl' 442

S0 OV i Ei) + BT (6,

yi = 77(3i7 Uf)

)

where z,;”' is the j-th component of the vector z; and z,(l) = h;. The above
condition implies the adaptive linearizability of the open loop system with a
strict relative degree equal to p + 1. For details on adaptive linearizability. see
Sastry and Isidori. [34]. The vector fields, f,.¢ are implicitly assumed to be
linearly parametrizable in the constant but uncertain parameters ¢ and 4,. Es-
timates of these uncertain constant parameters will, henceforth. be represented
by #; and 8 respectively. Similarly: the parameter estimation errors are given
by 9f and ég. y; represents the state that will be rendered unobservable by a
input-output’ linearizing control. In other words. the dynamics of y, represents

the internal dynamics of the i-th system.

(The origin of) ¥, = n(0.y;) is globally exponentially stable. This assumption
states that the zero dynamics of every system in the open loop interconnected
system is esponentially stable. This assumption is required to establish that g,
is bounded uniformly in ¢« when z; is uniformly bounded in ;. A more general
form of internal dynamics that arises in such interconnected systems is of the

following form

Ui = (20 Yis Zict e Yimly - o s Zimrtls Yior1)

In order to analyze the closed loop interconnected system with such an internal

dynamics, additional weak coupling conditions similar to those in Theorem 1
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(on the magnitude of the Lipschitz constants associated with y arguments of
n) have to be imposed to conclude that y, is uniformly bounded in : if z; are
uniformly bounded in 2. In order to keep the analysis simple. me will. however.

not use this general form of internal dynamics.

Every system avails the information of its state and the information of the states
of “r” systems preceding it. This assumption is necessary to generate a feedback
linearizing law which guarantees that the states of all the systems are bounded
uniformly in :. The above assumption enables us to define S, such that S, =0
describes the desired closed loop (string stable) dynamics. For example, one

could define
Sz' = :l(P) + 513517—1) +... .+ 6;0551) - p+lzz(i)]

where s* T 65270+ + dp is a Hurwitz polynomial with real roots. On the
surface. S; = 0. ||z,|lec < llzic1|loo if &ppy is sufficiently small. In matrix form.

S, can be defined compactly as
Ty = falxi oo Tices) + 005

where b, = [0,....0.1]7 and 2; = [z{V... ,,zfp)]T. f4 is a smooth vector field

b

and it satisfies the weak coupling conditions described in Theorem 1 so that
the dynamics on the surface S; = 0 is string stable. Algebraically, S, should be

understood as

p
S; = :} ) + wa( i st Tiopry)
Here 4 is a smooth scalar function.

The control input «; should be chosen to drive S; to the surface S; =0. In

order to obtain the control effort. differentiate S;

§ =

;l(p-i-l) + E’d(‘rz’: AN .1?,‘_,.+1> = Q?W’Yf(fi, e -,éi—rﬁ-l) + 95”@(51)111 -+ l,:’d(l‘z'. PRI ;Ti_,,+1)



Choose wu; such that
BTV (Eiv e Eimren) + BTV (6w + Valis . 2imrs1) = = AS;

Obtaining control effort requires inversion of 8,1, which may be singular.
If it is known that |6,31,] > C where C is a generic positive constant, projection
algorithms could be employed to counter this problem.

As seen earlier. the closed loop dynamics of any adaptively linearizable non-
linear systems with a coupling (interconnecting) control law can be cast in the fol-

lowing form :

T = falvi xicn. o0, Tiopg1) + 025,

S, = =\AS; + él-j-l/'I"r(lfl', Yis S Tz, ..., l’z’—r+1>

yi = o(x;.yi, Si) (5.12)

where by, = [0---0 1]T,91 = él- — §; where (92 is the estimate of the parameter and
8; is the actual (constant) value of the parameter. From the first equation. 5, =
0 describes the desired closed loop dynamics. The second equation describes the
dynamics of S; and the third equation indicates the behavior of the internal dynamics
associated with this system. Any adaptively linearizable nonlinear system with a
coupling (interconnecting) control law yields this form of equations. In order to

analyze the effect of parameter adaptation, we assume the following :
1. There exists a Lyapunov function V'(z;) ( for convenience. V7). such that
arllai]| < Vi <oyl

av; . r .
%J‘d(l‘z‘- Ticts o dimpr1) < =l P+ Gl el P

12211 < ]

-3 G r .
with [} > R[;“ijz [;.
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2. There esists a Lyapunov function W.(y,) (for convenience. ;) . such that

ﬁlHyin << »3/1”%”2

oW,

—570(171'-51'-,%) < —ao|lyil® + asllyi|1Si] + aufjyilll ||
oW,

— ' < a<ly

I, < asllud

We assume the exponentially stable behavior of the zero dynamics. Assumptions
land 2 enable the string stability of the interconnected system in the absence

of parameter mismatch.
3. W{(z;.yi. Si,2i—1.. ...xi~r41) is bounded for dl its bounded arguments.

Theorem 4 (Effectiveness of Parameter Adaptation for Interconnected sys-

tems): Under these conditions, the following parameter adaptation law

A

9,‘ = —PI{/—(.F{? e l’j_r+1)5i. I'>0
guarantees that for all bounded ||z;(0)|]. |!Si(0)]]oc: |16:(0)]] o,
o sup; ||zi()]ls.sup; 11Si()|loc-sup; 116i(+)|le are bounded.

o 2,(1),S;(t) — 0 asymptotically for all 7.

Proof Let V,, =52 67014, Using the adaptation law.

‘/Z“ — *2/\512

gp»w»ustwmg+¥ﬁ%%
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Similarly.

. 6:(0)|[2
sup [16i(-)] ] < m\j 15:(0) 12 + H/\—()(—'r')-
and

o0 . V;”(O)

2 9 _ A2

5111_p/0 Sidt = S‘}P 1Sl < 2\
LSO TR
- 2A

Calculating V; along the trajectories of z;,

BY

—[fa(Tiv. oo Timrpr) + OAS]

s—waW+i@mHHW+mmmw

=2

Since sup; ||Silloc £ K where K := \/HS M + Hemm)(Hrg) :

Vo < =0zl + 3 Ul P + oK |

=2

Define ¢; = /V;. Then

11 ! ] 3]
L<-——l J - Sl'
€S o T 2 g g 15

ledl < 3 ool + £

where p = 2.0c. Since [y > 237 [, | < M1|S;]|, where M > 0 is a constant.

Since sup; {|/Sil|oc ||S:]]2} < max{K. /% } < o0, it follows that sup, {||e;]l, ez} <

K, for some positive K. This implies that sup; {|lzllx. llaill2} < %C_]E By As-

sumption 2 (that the zero dynamics of every individual system is minimum phase),

sup; ||yi(+)||x exists. By Assumption 3, W(x;. Si.yi.xic1.. .., Ticrq1) 1s bounded.

Therefore. S; € L. Consequently, by Barbalat's Lemma. $; — 0
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Observe that sup; ||¢;||~ is bounded, since

11 d [ Qnq
'vl‘ < ———¢; —J—é,'_' —|5;
= 2a}16+22:201 J+1+2a1l |

Since sup; sup;{||e;|ls.||€i||2} are bounded, by Barbalat’s Lemma. ¢; — 0. There-
fore, V. z; — O.
Remarks:

1. In Assumptionl. S; = 0 yields the desired "string stable™ dynamics

2. Designing decentralized adaptive controllers for interconnected systems can be

done in two steps :

(a) Identify the desired closed loop (string stable) dynamics. Design a con-
troller to achieve the desired closed loop dynamics in the absence of para-

metric uncertainty.

(b) Use a gradient adaptation law to update the parameters.

3. The dynamics of the sliding surface is usually given by

S, = —Asign(S;) + ;W (i y,, Sty i1y o oy Ticrt)
then the following adaptation law should be used

~

6; = —TW(a,.....2i_,11)sign(S;), T' >0

to conclude that sup, || 2;||s, sup; ||Sil|sc. sup; ||6:]|oc are bounded and that x;(t). S;(t) —

0 asymptotically for all 7.
The proof of the above remark is similar to the proof of Theorem 4.
4. The dynamics of the interconnected system considered in this chapter represents

the dynamics of spacing errors of member vehicles in the platoon as described

in earlier chapters.



Chapter 6
Conclusions and Future Research

In this dissertation. we studied the stability of a string of high speed. densely
packed vehicles under automatic control in a unified approach. Vehicles are dynam-
ically coupled in the string through their dynamics and the feedback control laws.
Information structure dictates the spacing policy (constant spacing, constant head-
way time or constant safety factor) and the string stabilizing feedback control law.

In chapter 2, we developed a simplified vehicle model and partially validate
the model.

In chapter 3, we investigated string stability of various schemes in constant,
spacing and variable spacing policies. Lack of reference vehicle information limits
the stability performance of the platoon (in terms of the maximum attenuation of
maximum spacing errors that can be achieved upstream from vehicle to vehicle). We
showed. by analysis and simulation (and hopefully. experimentation) that lead vehicle
relative position information helps attenuate the maximum spacing error geometri-
cally with vehicle index in a platoon. It enhances robustness to the parasitic actuator
lags and 1s necessary to guarantee stability during adaptation.

In chapter 4, we investigated the effect of parametric uncertainty in the
string stability performance of the platoon. We presented a on-line implementable
direct adaptive control lam that guarantees boundedness of the spacing errors of all

vehicles at all time. Parametric convergence can be guaranteed for frequency rich

lead vehicle maneuvers.
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In chapter 3. we extended the concept of string stability to nonlinear systems.
Analysis, however. is restricted to “look ahead™ models. We have also demonstrated
the robustness of string stability to structural and singular perturbations. We then
developed a gradient adaptive algorithm to update uncertain parameters to guarantee
boundedness of the state of all systems at all time.

The desired platoon size is constrained by several factors. Among the im-

portant ones are:

1. Capacity: For smaller platoon sizes: capacity increases linearly with the platoon

size. For larger platoon sizes, capacity is almost a constant.

2. Ramp Length requirements: On-ramp length required increases atleast linearly

for large platoon sizes.

3. Communication Protocols/Hardware: If we were to use token ring architecture.
vehicle broadcast information update time increases linearly with platoon size.
degrading the platoon performance. Increase in control sampling time also

degrades performance.

4. String Stability: Depending on the information available. desired platoon size

is limited by string stability and ride comfort requirements.

The goal of a control engineer: therefore. is to design control algorithms that
do not restrict the platoon size at all. The control algorithms designed in sections
3.3 and 4.2 do not limit the platoon size if the sampling time is sufficiently small
and there is no delay in broadcasting the lead vehicle information. Current efforts in
evaluating masimum control sampling time for ensuring string stability (analytically
and numerically) can be found in [31]. Sampled data control using control algo-
rithm in section 3.3.4 couples the spacing error of every controlled vehicle with the
spacing errors of all the preceding vehicles. However. the effect, of the i-th preceding
vehicle wanes geometrically with i. Efforts are underway in evaluating the effect of
communication delays/protocols on the stability of the vehicle string [36].

Optimal tuning of gains to maximize rider comfort while still ensuring string

stability is an open issue. The structure of the controller given in section 3.3 does
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not satisy the conditions given in [19] and therefore. the corresponding results are
inapplicable.

Performance of a platoon in degraded weather conditions is another impor-
tant area which requires considerable attention. This dissertation only deals with
performance of platoon under nominal conditions. The “No-slip” condition assumed
in chapter 2 in developing the controller model is no longer valid when a vehicle is
moving on a wet road. The deterioration in the platoon performance is proportional
to the slip. A Considerable amount of slip causes instability- in the vehicle and the
platoon.

The effect of slip across the torque converters at low vehicle speeds on the

string stability of the platoon should also be investigated.
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